COMPACTIFICATION OF REDUCTIVE GROUP SCHEMES

AYAN NATH

ABSTRACT. Let G be an isotrivial reductive group over a scheme S. We construct a smooth projective
S-scheme containing G as a fiberwise-dense open subscheme equipped with left and right actions of G which
extend the translation actions of G on itself. This verifies a conjecture of Cesnavi¢ius [Ces22]. When G is
adjoint, we recover fiberwise the wonderful compactification. Finally, we give an example of a non-isotrivial
torus admitting no equivariant compactification.

1. INTRODUCTION

A reductive group scheme G over a base scheme S is called locally isotrivial if each point s € S has a
Zariski open neighborhood Us < S admitting a finite étale cover U, — U such that G x g U/ is split. This
is equivalent to local isotriviality of the central torus [SGA3, Exposé¢ XXIV, Théoréme 4.1.5]. A reductive
group is called isotrivial if Us can be chosen to be S.

Cesnavicius conjectured that every isotrivial reductive group scheme G has a compactification equipped
with a left action of G extending that of G on itself:

Conjecture 1.1 (|Ces22, Conjecture 6.2.3]). For an isotrivial reductive group G over a Noetherian scheme
S, there are a projective, finitely presented S-scheme G equipped with a left G-action and a G-equivariant
S-fiberwise dense open immersion

G = G.

When G is an isotrivial torus, this is shown in [CCSQZ, §6.3]. Using a variant of the Artin—Weil method
of birational group laws, [Li25| considers the case of adjoint G and obtains an equivariant compactification
whose geometric fibers agree with classical wonderful compactifications. In this paper, we construct
a smooth projective G x g G-equivariant compactification for any isotrivial reductive group G over an
arbitrary base S, thus verifying Conjecture 1.1:

Theorem 1.2. Let G be an isotrivial reductive group scheme over a scheme S. Then there exists a smooth
projective S-scheme G containing G as a fiberwise-dense open subscheme equipped with o left and right
action of G extending that on G given by left and right multiplication.

When G is semisimple, we can do more:

Theorem 1.3. Let G be a semisimple reductive group scheme over S. Then there exist projective S-schemes
G and G,q containing G and G,q, respectively, as fiberwise-dense open subschemes, equipped with left and
right actions of G and G.q extending those on G and Gaq by themselves such that

e there is an equivariant morphism G — G.q extending the central isogeny G — Gaq which is a
normalization over each geometric point of S,

o G.q is S-smooth and agrees with the de Concini—Procesi wonderful compactification over geometric
points of S, and
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o its boundary Gaq \ Gaq is the union of S-smooth relative effective Cartier divisors with relative
normal crossings'.

All our constructions commute with base change on S. We also verify that our construction agrees with
that of [Li25] for adjoint G (Proposition 4.5). In §5, we prove that Conjecture 1.1 is false without the
isotriviality assumption by showing that the standard example of a non-isotrivial torus over the nodal
rational curve [SGA3, Exposé X, §1.6] does not admit an equivariant compactification.

1.1. Acknowledgments. The author is grateful to Bjorn Poonen and Kestutis Cesnavicius for helpful
conversations. The author also thanks Shang Li and Arnab Kundu for their comments on earlier drafts.
This work was supported in part by Simons Foundation grant #402472 to Bjorn Poonen.

2. AFFINE MONOIDS

2.1. Vinberg monoids. Let G be a split reductive group scheme over a connected base scheme S. Let
T be an abstract Cartan. Define G =T ng G and T,q := T/Zg, where Zg denotes the center of
G. Choose a Borel B C G. Evaluating at the system of simple roots gives a canonical toric embedding
Tog — T‘jd where T;d is an affine space over S of relative dimension equal to that of T,4. Here, T;;d is
viewed as an S-monoid with unit group T,.q. The Vinberg monoid is a certain reductive monoid scheme
Vg over S equipped with an abelianization homomorphism a: Vg — T:d. The properties relevant to us
are recorded in Theorem 2.1.1.

Let us briefly recall the construction of the Vinberg monoid given in [XZ19, §3.2] over an algebraically
closed field. The same works over Z and hence for any split reductive group over an arbitrary base. Assume
S = Spec Z without any loss of generality. Let X*(T,q)pos be the submonoid of X*(T) generated by the

simple roots. Let X*(T)* be the submonoid of dominant characters, and let X*(T) /s be the submonoid

generated by X*(T)" and X*®(Tad)pos- We equip X*(T) with the partial order < defined by A < p if
p— A€ X*(Tad)pos- We write A < p if A < o and X # p.
The coordinate ring O(G) admits a canonical multi-filtration indexed by X*(T)! ., induced by the

pos?

G x G action on O(G) via left and right translation, given by setting fil, O(G), v € X*(T)! ., as the

pos’
maximal G x G-submodule of O(G) such that all its weights (A, \') € X*(T) x X*(T) satisfy A < —w(v)
and A < v. Here, wy is the longest element of the Weyl group of G. Each piece fil, O(G) is finite free over
Z and the associated graded is given by
fil, O(G)
r@ G = - wa v ®SV7
gr0(G) @ . Y L O(G) @ o(v)

veX®(T)os veXe(T)*

where S, denotes the Schur module of highest weight v, i.e., the induced G-module from the character —v
of B [XZ19, Lemma 3.2.1 (4)].

The Vinberg monoid Vg is defined as the spectrum of the Rees algebra associated to this filtration:

Va := Spec @ fil, O(G) |,
vEX®(T)os

endowed with the natural (co)multiplication map. It is an affine monoid Z-scheme of finite type which
admits a monoid homomorphism a : Vg — T;‘d := Spec Z[X*(T,d)pos) induced by the inclusion of the
ring Z[X*(Taq)pos| into the Rees algebra. The formation of (Vg,a) commutes with base change on S.
Indeed, for any ring R, the injection of filtered R-algebras R ® ) fil, O(G) — > fil, O(Gg) induces an

1Follovving [SGA1, Exposé XIII, §2.1], for an S-scheme X, we say that a relative Cartier divisor D C X is strictly with
relative normal crossings if there exists a finite family (f; € T'(X, Ox))ier such that (1) D = {J,c; Vx(fi), and (2) for every
x € Supp(D), X is smooth at = over S, and the closed subscheme V((fi)icr(s)) C X is smooth over S of codimension |I(z)],
where I(z) = {i € I'| f;(x) = 0}. The divisor D has relative normal crossings if étale locally on X it is strictly with relative
normal crossings.
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isomorphism on associated graded algebras since the formation of Schur modules commutes with base
change. Thus, R® Y fil, O(G) — >_ fil, O(Gg) is actually an isomorphism of filtered rings.
Theorem 2.1.1. The S-monoid Vg fits into a Cartesian diagram

G+ — VG

|

Jr
Tad ” Tad

and
e G is the unit group of Vg,
e the T x5 G xg G action on G given by T acting on the first component and G acting on itself
by left and right multiplication extends to an action on Vg,
e a is faithfully flat.
Proof. See |[XZ19, Proposition 3.2.2|. O

2.2. Nondegenerate locus. Choose a Cartan subgroup c: T — B. Let U, be the unipotent radical of
B and U_ be that of the opposite Borel.

Proposition 2.2.1. There is a canonical section 5: T, — Vg extending s: t — (t,c(t)) (mod Zg) on
respective unit groups.

Proof. We identify T with the image of ¢ and assume S = Spec Z. The restriction ring map r : O(G) —
O(T) sends the filtered piece fil, O(G) into the span of characters e* satisfying A < v. Here, e* denotes
the character corresponding to A.

We define a retraction ¢ : O(Vg) — O(T},) by mapping a homogeneous element f, € fil, O(G) to the
coefficient of its highest weight term. Explicitly, we define:

o(fv) = (coefficient of " in r(f,)) - €”.

This map is multiplicative. Consider homogeneous elements f € fil, O(G) and g € fil, O(G). Their
product fg lies in fil,, O(G). The restriction map is a ring homomorphism, so r(fg) = r(f)r(g). Since
r(f) involves only weights A < v and r(g) involves only weights A" < p, the weight v + p in the product
r(f)r(g) can only arise from the product of the term e” in 7(f) and e in r(g). Indeed, if \+ N =v+p
with A < v and X < pu, then (v — X) 4+ (u—X') = 0. Since v — X and p — X' are non-negative integer linear
combinations of simple roots, this implies A = v and X = p.

Thus, ¢(fg) = ¢(f)$(g). Since ¢ maps the element 1-e” € O(Vg) to e € O(T},), it forms the required
section § of the abelianization. O

Proposition 2.2.2. The multiplication map m: U_ xg T xg T:d xsUtp — Vg given by (u_,t,a,uy) —
u_ts(a)uy is an open embedding.

Proof. We first prove this in the case when S is the spectrum of an algebraically closed field k. By [AB04,
§7.5], V@ is a normal irreducible k-variety. Therefore, m is a birational morphism of normal irreducible
k-varieties. By Zariski’s main theorem, it suffices to verify that m is injective on k-points. Checking this is
equivalent to showing that

u_ts(ar)uy =5(az) = u_=up =t=1,a1 = a

for u_ € U™ (k),us € UT(k),t € T(k),a1,a2 € T} (k). We may assume that a; = e; where e; is an
idempotent corresponding to a subset I of the set of simple roots without any loss of generality. There is
a map from the source of m to T;’d given by (u_,t,a,us) — ta. Then m is a T;’d-morphism where the
target is viewed as a T:d—scheme via a. Therefore, te; = ao as elements of T:d. Hence,

u_ts(ep)uy = (t,t)8(e;) = u_s(er)us = (1,1)5(e;) = (t u_)s(er)uy =35(eg).
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In [DG16, Appendix C], it is shown that the P x; P~ -stabilizer of §(es) is P xp; P~ where P is a certain
standard parabolic subgroup of G depending on I, P~ is the opposite parabolic, and M is the Levi factor.
It is also shown that

P={geGlg-5(e;) =5(er)-g-5(er)} and P~ ={ge G|5(es)-g=5(er)-g-5(er)}
From the above descriptions, one deduces that the G x; G-stabilizer of §(e) is actually contained in

the P x;, P~ -stabilizer and hence equals P xy; P~. We conclude that ¢t = u_ = u4 = 1 and hence m is
injective on k-points.

Let us now consider the case of general S. Since the formation of m commutes with base change, it
follows by fibral criteria that m is étale. Thus, m is an étale monomorphism and we conclude by [Stacks,
Tag 025G]. O

Lemma 2.2.3. Let H be a flat group scheme locally of finite presentation over a scheme S acting on
an S-scheme X. Let U C X be an open subscheme. Then the saturation H - U of U is an H-stable open
subscheme of X. If in addition

e U is S-flat then so is H - U,
e U is locally of finite presentation over S then so is H - U,
e U is S-smooth then so is H - U.

Proof. The H-saturation H - U is defined as the image of the composition

(h,x)—(h,h-x) (h,x)—z
o —_

HXSU‘—>H><SX HXSX X.
The middle map is an isomorphism and the last map is a projection. Since flat morphisms of locally finite
presentation are universally open [Stacks, Tag 01UA], it follows that H - U is open. The induced map
H xgU — H - U is fppf. Since flatness and being locally of finite presentation are fppf local on source
[Stacks, Tag 06ET, Tag 06EV], S-flatness of H - U is equivalent to that of H xg U and the same is true for
being locally of finite presentation. When U is smooth, we reduce to the case of S an algebraically closed
point by [Stacks, Tag 01V8], in which case smoothness follows because translations of U cover H - U. O

The G x g G-saturation of the image of m in Proposition 2.2.2 is called the nondegenerate locus, denoted
V&- It is independent of the choice of Cartan subgroup, T xg G xg G-stable, and contains G by
construction.

Corollary 2.2.4. Vg, is smooth over S.

3. PROOF OF THEOREM 1.2

3.1. Preliminary reductions. Let G be the split form of G. Fix a pinning of G. This canonically
determines a presentation of the automorphism group scheme Autg,g as a semidirect product of Gag

and Outg/g and hence a unique quasi-split inner form Gg.¢p of G endowed with a quasi-pinning! [SGA3,
Exposé XXIV, Corollaire 3.12].

Since G is assumed to be isotrivial, the étale local G,q-torsor corresponding to G.¢p is isotrivial too.
As finite étale morphisms satisfy effective descent for projective schemes, it suffices to prove the theorem
for Gg.¢p. Indeed, this essentially boils down to the fact that finite group quotients of projective schemes
are representable by projective schemes.

Choose a finite étale Galois cover S’ — S splitting Gq.¢p with Galois group I'. The data of Gq.ep is
then equivalent to the data of a I'-action on the Gq.ep xg S’. Thus, it suffices to find an equivariant

1A quasi-pinning is the data of a Killing pair (B, T) a section s € H°(Dyn Gq.ep, g°)* where Dyn G ep is the scheme of
Dynkin diagrams of Gq.¢p and g* is a certain line bundle on Dyn G.ep. When G.sp is split and A a system of simple roots,
Dyn Gq.ep =~ S x A and g is the line bundle which restricts to the eigenspace gn over S x {a} for each a € A. That is, the
notion of quasi-pinning coincides with that of pinning for split reductive groups. See [SGA3, Exposé XXIV, §3.9] for more
details.


https://stacks.math.columbia.edu/tag/025G
https://stacks.math.columbia.edu/tag/01UA
https://stacks.math.columbia.edu/tag/06ET
https://stacks.math.columbia.edu/tag/06EV
https://stacks.math.columbia.edu/tag/01V8
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compactification equipped an action of I' extending that on Gg.ep x5 S’. The quasi-pinning on Gqep
induces a pinning on Gqep x5 S’. Note that I' additionally acts on the pinning of Gq.ep X5 5"

From now, we replace our setup with a pinned reductive group (G,B, T, {uq}aca) over S equipped
with an action of a finite group I.

3.2. Cox-Vinberg hybrid. We perform the Cox-Vinberg construction introduced in [MT16, §6] in a
I-equivariant fashion. As usual, let X4(T) be the coweight lattice, X.(T)a the dominant chamber, and
W the Weyl group. Of course, the dominant chamber is I'-stable.

Lemma 3.2.1. There exists a I'-stable fan X which is a subdivision of the rational polyhedral set X.(T)E
such that WX, the W -saturation of 3, is smooth and projective.

Proof. Subdivide the Weyl chambers in X4(T) to obtain a projective fan ¥/. Now apply [CHS05, Théoréme
1] to X' with W x I as the finite group acting on X4(T). This yields a new smooth projective W x I'-stable
fan ¥ which is a subdivision of ¥’. Then take ¥ = X" N X.(T)a. O

Remark 3.2.2. When G is semisimple, we have the canonical choice of taking ¥ to be the fan consisting
of the single cone X.(T)a Note that this fan does not depend on the choice of Galois cover S — S.

Choose primitive lattice generators 5 = {f;}ics of all the rays in X. The finite group I' stabilizes
and hence lifts to an action on the finite set I. The $;’s induce monoid homomorphisms 3;: AL — T;“d.
Multiplying these, we get a monoid homomorphism Aé — T:d. Define Vg, g so that the following square
is Cartesian:

VG’g E— VG

I
AL —— T/
Then Vg g is a I'-equivariant reductive monoid scheme over S such that all diagrams in the above
square are I'-equivariant. Also, it has GIIn,S X g G as its group of units. For any o C I, let U, := {z €
AL:x; £0ifi ¢ o}. Then let Ag 5 be the union of all U, such that (3;: i € o) is a cone in 3. Define
Gp=Ags Xt Vg This is called the nondegenerate locus in [MT16].

3.3. Compactification as a GIT quotient. We apply geometric invariant theory developed over general
bases in [Ses77|. As in [MT16, §8|, we consider quotients Vg g /, an?s with respect to a suitable
linearization p on the trivial line bundle. Note that the formation of such GIT quotients is compatible with
arbitrary base change and in particular, passing to geometric fibers, by virtue of linear reductivity of tori.
Semistable and stable loci are defined as open subschemes and their formation commutes with arbitrary
base change essentially by construction [Ses77, §II]. In particular, one can use Hilbert-Mumford criterion
along geometric fibers to identify stable and semistable geometric points. Therefore, the same argument as
in the proof of [MT16, Theorem 8.1] works to show that there is a linearization p such that V& g Is the

semistable (and stable) subscheme. As a result, the GIT quotient G := Vg3 /, Gf;l’ g contains G as a

fiberwise-dense open subscheme by virtue of compatibility with formation of this quotient and restricting
to geometric points. It also acquires an action of I', being a geometric quotient of V¢, 3 by GIII1 g-

Proposition 3.3.1. G is separated and finitely presented over S.

Proof. Let Ggp be the Chevalley group scheme over Spec Z for G. The same fan ¥ as in Lemma 3.2.1 can
be used to produce a compactification Gcy, < Gey so that G = Gey, xz S. Therefore, it suffices to check
that Gy, — Spec Z is separated and finitely presented, which is readily true by standard properties of
GIT as Z is universally Japanese (c.f. [Ses77, §4]). O

Proposition 3.3.2. G is S-smooth.
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Proof. Proposition 2.2.2 gives an open cell mg: U_ xg T xg Aé xs Uy < Vg g by base changing m.
The G xg G translates of mg cover V& s since the same is true for m and V¢ by definition. This open
embedding is equivariant for the obvious action of an g on T and Aé. Passing to GIT quotients with the
same linearization as before, we thus get an open emb7edding

U_ XSTXSU+ L)é,

where T is the toric scheme for T corresponding to the fan . This toric scheme can be constructed as
T xs AL/, an’s with semistable (and stable) subscheme equal to T xg A3 5 (see, for e.g., [CLS11, §5.1]).

Since WX is smooth by construction (Lemma 3.2.1), so is ¥. T hielrefore7 T is smooth. The desired result
follows by Lemma 2.2.3 since the G x g G-saturation of U_ xg T xg U is G. [l

The proof of Proposition 3.3.2 also shows

Proposition 3.3.3. There is an open cell
Q:U_ XSTX5U+ — G

whose G x g G-saturation is G.

What remains is to check projectivity of G. In [MT16], properness is shown by realizing G as the coarse
space associated to a certain proper moduli stack of bundles. We resort to an alternative approach as we
do not have a modular interpretation at hand.

Proposition 3.3.4. G is S-projective.

Proof. As in the proof of Proposition 3.3.1, we may assume S = Spec Z. Because G is constructed as
a GIT quotient, it suffices to check properness. We use valuative criterion for properness. For this, we
may assume that S is the spectrum of a discrete valuation ring R with fraction field K. By [Rom1l3,
Lemma 4.1.1], it is enough to check that any K-point z € G(K) extends to an R-point of G. Using
the Cartan decomposition of G(K), we can assume zx = A\(w) € T(K) for some dominant coweight A
and uniformizer 7. Such a point induces an R-point of T;d which in turn induces an R-point xg of Vg,
by applying the canonical section § (c.f. §2.2). Base changing, we get a map Ag Xq+ TR = Vg, and
choosing an arbitrary S-morphism of affine spaces A{q — T:d, not necessarily a section, we get a map
xr — Va,- By construction, the generic point of x lies inside the unit group an’ g X5 G where its second
component is zx. Then the image of xp along the GIT quotient morphism gives the desired point. g

Remark 3.3.5. It is likely possible to obtain a complete combinatorial classification of all equivariant
compactifications of an isotrivial reductive group scheme by following the methods of [MT16], but we do
not pursue this here.

4. THE SEMISIMPLE CASE

We prove Theorem 1.3 in this section. Let G be a semisimple reductive group scheme over S. By
[SGA3, Exposé XXIV, Théoréme 4.1.5|, G is locally isotrivial. This allows us to carry out the construction
of §3 Zariski locally on S where we always choose ¥ according to Remark 3.2.2. Since this choice is
independent of the finite étale Galois covers, they glue to give G — S. By [Vin95, Theorem 8] and [Boul5,
Proposition 1.3] and compatibility of such GIT quotients with base change, geometric fibers of G,q are
indeed classical wonderful compactifications of de Concini and Procesi (also see [MT16, Theorem 5.4]). We
have shown that G,q is smooth projective over S. There is a morphism G — G,q coming from a natural
map of Cox-Vinberg monoids, extending the central isogeny G — G,.q. By [MT16, Lemma 9.2], (G); is the
normalization of G in (G,q)s for each geometric point s — S. What remains is to prove the statement
about the boundary.

Assumption 4.1. From now on, we assume G is adjoint.
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Proposition 4.2. G\ G is the union of S-smooth relative effective Cartier divisor with normal crossings.

Proof. By construction, the formation of G \ G < G commutes with base change on S. Since smoothness,
being a relative divisor, and having normal crossings are étale local on the base, we may assume that G is
split and S = SpecZ. By Proposition 3.3.3, there is an open cell

Q:U_xgTxgUp =G
where the toric embedding T < T looks like [],cn Gm,s <> [[,ea Ak The complement T \ T is clearly
an S-flat divisor, therefore by Lemma 2.2.3, so is the whole boundary G \ G. By [Stacks, Tag 062Y] and
the fact that translates of Q cover G when S is an algebraically closed point, it follows that D := G\ G is
a relative effective Cartier divisor. Since G is connected, irreducible components, say D;, of this divisor are
G x g G-stable. Since © is dense in G, it intersects each D; in a dense open subscheme, which implies that
D; is the G x g G-saturation of the dense open 2 N D; inside D;. Hence, we obtain that D; is S-smooth by
Lemma 2.2.3. What remains is to check that D = Zl D; has relative normal crossings. We know that D
has normal crossings for each geometric point s — S since translates of Q, cover G,. The desired result
now follows from Lemma 4.4. O

Remark 4.3. In fact, we end up proving a bit more when G is split: irreducible components of the
boundary divisor are indexed by a set of system of simple roots A and G x g G-stable subschemes of G\ G
correspond to subsets of A.

Lemma 4.4. Let X be a smooth S-scheme equipped with a relative effective Cartier divisor D with
S-smooth irreducible components. Assume that for each geometric point s € S, Ds has normal crossings in
Xs. Then D has relative normal crossings over S.

Proof. Let x € X be a point with image s € S, and Dy, ..., D, the irreducible components of D passing
through z. Choose an affine open neighborhood U of z such that D; N U is cut out by f; = 0 for f; €
HO(U, Ox). The images of f; in Qx/s ®k(x) are linearly independent because Qy/g ® k(z) ~ Qx, /s @ k()
and the same is true in Qx_/5 ® m by assumption, where 5 is an arbitrary geometric point lying over s.
Let N be the rank of 2x/g at . By Nakamaya and possibly shrinking U, extend these to a set of functions
{fiy--+s fns fn+1,- .-, v} each of which vanish at x such that their differentials form a basis for the trivial
vector bundle /5. We thus obtain an étale S-morphism

such that D N U is the preimage of the relative normal crossing divisor zixs -2, = 0 in Ag . O]

Proposition 4.5. G agrees with the equivariant compactification X of [Li25, Theorem 1].

Proof. Firstly, it suffices to check this for quasi-split G because our G and the compactification X of
[Li25, Theorem 1] is obtained by first making the same constructions for split G and then performing
the obvious inner twist. The construction for quasi-split G is basically the same as the construction
for split G where everything is equipped with the action of a finite abstract group preserving a pinning.
Thus, we reduce to the split case. By Proposition 3.3.3, we have an open cell Q: U_ xgT xg U, — G
whose G x g G-saturation is G. The method of [Li25| starts by defining a rational G x g G-action 7 on
Q |Li25, Theorem 3.4| and then defining X’ as an appropriate fppf sheaf quotient of G xg 2 xg G. Due
to the uniqueness assertion of [Li25, Theorem 3.4, we reduce to checking that the rational S-morphism
G x5 Q x5 G --» Q induced by the action map G xg Q2 xg G — G given by (g1,w, g2) — giwgs satisfies
the conditions of loc. cit., but this is clear. (]

5. A TORUS ADMITTING NO EQUIVARIANT COMPACTIFICATION

Let k be an algebraically closed field. We recall the construction of [SGA3, Exposé X, §1.6]. Let S; be
the Néron 1-gon, obtained by glueing sections 0 and co of Pi. It can be realized as the nodal cubic curve


https://stacks.math.columbia.edu/tag/062Y
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S1 equipped with the normalization 7 : P,{; — S1. Let S5 be the Néron oco-gon which comes equipped
with a finite morphism 7 : P} x Z — S, which glues the co-section of P}, x {i} with the O-section of
P} x {i+ 1}. There is an infinite connected étale Galois cover So, — Sy with Galois group Z which is
covered by the trivial Z-torsor P} x Z — P} where Z acts on the source via j - (x,7) = (z,i + j).

Define an action of Z on the constant torus G2, x Ss by 1- (t,z) = (Mt,1-z) where M is the infinite
order automorphism of Gﬁq,k given by (t1,t2) — (t1,t1t2). By Galois descent, we thus obtain a rank 2
torus T, — Si. Since T, has infinite monodromy by construction, T, is a quasi-isotrivial! torus that is
not isotrivial. Alternatively, Ts, can be constructed by taking the constant torus GIZn i X P,1C — P,l€ and
glueing the fibers over 0 and oo via the automorphism M.

Proposition 5.1. There is no projective S1-scheme Tg, containing Ts, as a fiberwise dense open subscheme
such that the translation action of T'g, on itself extends to Tg,.

Assume the contrary that such a Tg, exists. First, replace Tg, by its reduction so that it’s a genuine
k-variety— we know that it is irreducible because it contains a torus as an open dense subvariety. Let X be
the base change of Tg, along the normalization 71: P}, — Si. Let T := an,k x P1 be the open dense
torus inside X.

Since X is irreducible, it must be flat over Pi. Set T := Gil 1. We use the following result of Brion:

Py

Theorem 5.2 (|Bril5, Theorem 4.8|). Let G be a split torus over a field k. Then every quasiprojective
k-variety X equipped with an action of G admits a finite étale G-equivariant cover f: Y — X, where Y is
the union of open affine G-stable subvarieties.

We may view X as a projective variety with Gil,k—action by identifying T Xp1 X ~ G?n,k X X in the
source of the action map. By applying Theorem 5.2, we get a G?n p-equivariant finite étale cover 7: Y — X
such that Y is the union of open affine ng, -stable subvarieties.

Lemma 5.3. 7: 7 Y(T) — T is a trivial cover.

Proof. Any finite étale cover of T comes from a finite étale cover U — G?n - Indeed, the projection
T— an i 1S a P,lf—bundle and hence induces an isomorphism on étale fundamental groups by the homotopy

exact sequence. A connected finite étale cover U — G2 , must be an étale self-isogeny induced by a linear
endomorphism of the character lattice. Equivariance forces such an isogeny to be an isomorphism. U

Label the components of 771(T) as Ty, Ty, ..., T,. Each of these are abstractly isomorphic to T and
map down to T C X via identity. The G?n’k-action on T; upgrades to a T;-action extending the one on T;
by itself. The union |J; T; C Y is a P}-fiberwise open-dense subscheme since the same is true for T C X.
Denote by ¢ a closed point of Pt. The fiber Y; has irreducible components given by the (scheme-theoretic)
closures of (T1)¢, (T2)t,...,(Th):. In particular, each fiber of Y has n irreducible components. Every
closure T;, 1 < i < n, is faithfully flat over P,1C and hence has fibers of pure dimension 2. Therefore, each
(T;); is the union of closures of a nonempty subset of {(T1)s, (T2),. .., (Ty)e}. For i # j, (T;); and (T,):
cannot have an irreducible component in common, say the closure of (T})s, because Y; is generically
reduced. Alternatively, if £ is the generic point of (T}), the local ring Oy ¢ ~ O, ¢ is a DVR and hence
cannot contain more than one minimal prime. We thus obtain:

Proposition 5.4. Every T; is a flat projective variety over P/%; containing the split torus T; as a fiberwise
dense open subvariety such that the action of T; on itself extends to T; in a way that T; can be covered by
Gil -stable open affine subvarieties. Furthermore, there is an isomorphism between the normalizations of

the O-fiber and oco-fiber of T; restricting to (x,y) — (z,2y) on an’k.

IThis means it is split by an étale cover.
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Proof. The first part is clear from the previous discussion. For the second part, note that there is a finite

birational morphism (T;); — X; because it restricts to identity on the toral part and hence induces an
isomorphism on normalizations by Zariski’s main theorem. ]

Set W := T and rename T; as T for ease of notation. Denote W — P,lc by f. Let U C W be a
nonempty G?n’k—stable open affine subvariety. Then V := f(U) is a nonempty open subvariety of P,lg. Of
course, U is P,lg—ﬁberwise open and hence intersects Ty = ng,v fiberwise. Due to an?k—invariance, U
must contain whole of Ty. The G?n’k—action on U can be upgraded to an action of Ty;. Therefore,

Proposition 5.5. Let x: Spec OP}C,:c — P} be the local scheme at a closed point x € PL. Then Wy can be
covered by Ty-stable affine open neighborhoods of Ty C W.

Lemma 5.6. Let X be an integral affine scheme over a discrete valuation ring R which contains a split
R-torus T as a fiberwise dense open subscheme such that the action of T on itself extends to X. Then the

fibers of the normalization X as an R-scheme are irreducible and normal.

Proof. Let M be the character lattice of T. Such an affine toric scheme X is given by a graded sub-R-
algebra A of the M-graded group ring R[M], which in turn is equivalent to the data of a finitely generated
submonoid ) of M which generates M as a group. The last bit ensures that X contains G” m.R A8 a open
dense subscheme. The normalization of A then corresponds to the saturation monoid Q of ) defined as
{a € M: na € Q for some n € Z}. The special fiber of X is then the spectrum of the monoid ring k[Q],
where k is the residue field of R. Since k[Q] is a subring of the integral domain k[M], it follows that the
special fiber of X is irreducible. Since Q is saturated, k[Q] is also integrally closed. U

Let W — W3 be the normalization. By Proposition 5.5 and Lemma 5.6, it follows that Wg is a flat
projective normal T,-toric scheme over R := k[t];) with irreducible normal fibers. Consider WO and W .
The generic fibers of these are identified and there is an isomorphism between their special fibers which
restricts to (z,y) — (z,zy) on respective toral parts. By the theory of normal toric schemes over DVRs
[Kem-73, item e) at p. 192], these are classified by two complete rational polyhedral fans ¥; and Y9 in
R? x R, respectively. Let 7: R? x R>o — R? be the natural projection where we often view the target
as sitting inside R? x R>q as R? x {0}. We recall the following two facts:

e By [Kem 73, item €’) at p. 192], the recession fan of ¥;, defined as the image of ¥; N (R? x {0})
along 7, classify the respective generic fibers, and are therefore equal, to say g.

e There is an embedding of fans {0} x R>g < ¥; corresponding to the open embedding of toric
schemes an’ R WQ and Gil, R W . Indeed, the toric scheme G2 m.r — Spec R is classified by
the cone {0} x R>p. Therefore, the components of the special fiber containing G?n,k are classified
by the (complete) fan A; := {w(0): 0 € ¥;, {0} x R>g C o} as a toric variety. Furthermore, there
is a one-to-one correspondence between irreducible components of the special fiber and vertices of
the polyhedral complex ¥; N (R? x {1}) (c.f. [Wall3, Proposition 7.15] or [BPS18, Remark 3.5.9]).

We thus conclude that every ray in ¥; not equal to {0} x R must be contained in the boundary R? x {0}.
That is, W, is a constant family— the base change of a normal toric variety over k. Now, the fact that

there is an isomorphism between the special fibers of WQ and WN/@ extending (z,y) — (x,zy) on the toral
1 1 .

0 1]. However, A1 = ¥y = As. Thus, ¥y is a

complete fan in R? which is stable under the automorphism A. There must exist a ray £ € ¥ which is not

contained in the x-axis for otherwise it would not be complete. Then {A™¢: n € Z} is an infinite set. This

contradicts the finiteness of ¥g. The proof is complete.

part corresponds to the fact that A(A;) = Ay where A = [

The extension of these results to the general setting of toric schemes will be explored in a future paper.
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