
GALOIS REPRESENTATIONS ATTACHED TO CUSPIDAL NEWFORMS OF WEIGHT k Ê 2

AYAN NATH

Abstract. We provide an account of Deligne’s construction of a two-dimensional ℓ-adic Galois representation
attached to a normalized cuspidal newform of arbitrary weight k Ê 2.

1. The theorem

Theorem 1.1 (Deligne [De71]). Let ℓ be a prime and f be a normalized cuspidal newform of weight
k Ê 2 and level N with Fourier coefficients an and Nebentypus χ. Then there exists a semisimple Galois
representation ρ f ,ℓ : Gal(Q/Q)→GL2(Qℓ) which is unramified at all primes p not dividing ℓN and Frobp ,
any arithmetic Frobenius over p, has characteristic polynomial X 2 −ap X +pk−1χ(p).

Brauer-Nesbitt theorem from representation theory tells us that semisimple representations are
uniquely determined upto isomorphism by their characteristic polynomials. Together with this and
Chebotarev density theorem and some continuity arguments, it can be shown that the equality

det(X I2 −Frobp ) = X 2 −ap X +pk−1χ(p), for all p ∤ ℓN ,

determines ρ f ,ℓ, if exists, upto isomorphism.

2. Hodge filtration and the Kodaira-Spencer map

Definition 2.1. Let S be a scheme. A smooth proper morphism E → S with geometrically connected
one-dimensional fibers of genus 1 and a specified section e : S → E is called a family of elliptic curves
over S.

It can be proven that E has the structure of a commutative group S-scheme which restricts to the
usual group law of elliptic curves on geometric fibers. In the complex analytic setting, we replace the
word “scheme” by “analytic space”. Note that e is a closed embedding.

Let f : E → S be a complex analytic family of elliptic curves. We have the de Rham exact sequence
0→ f −1OE →OE →Ω1

E /S → 0. Taking pushforwards,

0→ f∗ f −1OS → f∗OE → f∗Ω1
E /S →R1 f∗( f −1OS)→R1 f∗OE →R1 f∗Ω1

E /S →R2 f∗( f −1OS)→ · · ·
By Stein factorisation and Zariski’s main theorem, OS → f∗OE is an isomorphism. We have the natural
isomorphisms

Ri f∗Z⊗ZOS
∼= Ri f∗Z⊗Z f∗ f −1OS

∼= Ri f∗( f −1OS).

So, the long exact sequence can be rewritten as

0→R1 f∗OE →R1 f∗Z⊗ZOS → f∗Ω1
E /S →R1 f∗Ω1

E /S →R2 f∗Z⊗ZOS → · · ·
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The map R1 f∗Ω1
E /S → R2 f∗Z⊗Z OS is an isomorphism due to R2 f∗Z ∼= Z and Serre duality on fibers

(proper base change). Writing ω= f∗Ω1
E /S , we have an exact sequence

0→ω→R1 f∗Z⊗ZOS →ω∨ → 0, (1)

where f∗Ω1
E /S

∼= ω∨ is due to Grothendieck duality. The above exact sequence is called the Hodge
filtration. For any integer n, there is a cup product pairing of vector bundles

R1 f∗((Ω1
E /S)⊗n)⊗ f∗((Ω1

E /S)⊗(1−n))→R1 f∗Ω1
E /S .

This pairing is perfect as seen be applying Serre duality on fibers. Putting n = −1, it follows that
R1 f∗(Ω∨

E /S) is OS-dual to f∗((Ω1
E /S)⊗2). Now consider the dualized cotangent exact sequence

0→Ω∨
E /S →Ω∨

E → ( f ∗Ω1
S)∨ → 0.

Taking derived pushforwards gives a coboundary map f∗(( f ∗Ω1
S)∨) → R1 f∗(Ω∨

E /S). Dualizing this and
using f∗(( f ∗Ω1

S)∨) ≃Ω∨
S (because OS ≃ f∗OE ), we get a map f∗((Ω1

E /S)⊗2)→Ω1
S . By checking on fibers,

we see that the natural map ω⊗2 → f∗((Ω1
E /S)⊗2) is an isomorphism. Therefore, we obtain a OS-linear

map
KSE /S : ω⊗2 →Ω1

X ,

which we call the Kodaira-Spencer map. Since all of our steps behave well with base-change, we remark
that KSE /S is compatible with base-change S′ → S for S′ smooth.

3. The Eichler-Shimura isomorphism

Let h be the complex upper-half plane. Define the map of family of elliptic curves f : E → h as the first
projection of

E = {(z, [x : y : w]) ∈ h×CP2 : y2w = 4x3 − g2(z)xw2 − g3(z)w3},

where the identity section is given by e(z) = (z, [0 : 1 : 0]). See [DS05, Section 1.4] for definitions
of g2 and g3. Define Γ = Γ(N ) = Ker(SL2(Z) → SL2(Z/NZ)). Denote YΓ = h/Γ. Also, denote by XΓ the
compactification of YΓ. We state without proof the following fact–

Theorem 3.1. YΓ represents the moduli functor AnaSp→ Set which associates to an analytic space S the
set of all isomorphism classes of complex analytic families of elliptic curves E → S together with a pair of
sections P,Q ∈ E (S)[N ] such that (P,Q) : (Z/NZ)⊕2

S → E [N ] is an isomorphism of analytic group S-objects.

Let fΓ : EΓ→ YΓ be the corresponding universal family of elliptic curves with “Γ-structure”. This fΓ is
a “descent” of f : E → h. It is worth nothing that even though h cannot be “algebraized”, YΓ can be. It’s
clear that we have an exact sequence similar to (1)–

0→ωΓ→R1 fΓ,∗Z⊗ZOYΓ →ω∨
Γ → 0

This is a sequence of locally free sheaves as the following lemma and Grauert’s theorem [MO173177]
shows.

Lemma 3.2. R1 f∗Z∼=Z⊕2.

Proof. We know that R1 f∗Z is the sheafification of U 7→H1( f −1(U ),Z). Take some “small enough” simply-
connected open subset U ⊂ h. By smoothness, f −1(U ) is homeomorphic to U ×Ex where x is some
point in U and Ex = f −1(x). It is easily seen that H1(U ×Ex ,Z) ∼= H1(Ex ,Z) ∼= Z⊕2. Hence, the lemma
follows. □
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Let us write U = R1 fΓ,∗Z and U k = Symk
Z

(R1 fΓ,∗Z). Since the above is an exact sequence of locally
free sheaves, we have an injective map of OYΓ -modules ω⊗k

Γ →U k ⊗ZOYΓ . It is this map which will allow
us to relate modular forms with étale cohomology. Tensoring by Ω1

YΓ
, we get an injection

ω⊗k
Γ ⊗Ω1

YΓ
→U k ⊗ZΩ1

YΓ
.

Tensoring the de Rham exact sequence with U k gives

0→U k ⊗ZC→U k ⊗ZOYΓ →U k ⊗ZΩ1
YΓ
→ 0.

We therefore have a C-linear map

δ : H0(YΓ,Ω1
YΓ

⊗Zωk
Γ)→H1(YΓ,U k

Γ ⊗ZC).

We also have the “complex conjugate” map

δ : H0(YΓ,Ω1
YΓ

⊗Zωk
Γ)→H1(YΓ,U k

Γ ⊗ZC).

Define

sh◦ = δ⊕δ : H0(YΓ,Ω1
YΓ

⊗Zωk
Γ)⊕H0(YΓ,Ω1

YΓ
⊗Zωk

Γ)→H1(YΓ,U k
Γ ⊗ZC).

For any cohomology theory H whose variant with compact supports is denoted by Hc , denote H̃• =
Im(H•

c →H•) and R̃• = Im(R•
c →R•). The invertible sheaf ωΓ can be extended to XΓ to a bigger invertible

sheaf, which we denote by the same symbol ωΓ.

Theorem 3.3 (Eichler-Shimura). There is an isomorphism sh such that the following diagram commutes.

H0(XΓ,Ω1
XΓ

⊗Zωk
Γ)⊕H0(XΓ,Ω1

XΓ
⊗Zωk

Γ) H̃1(YΓ,U k
Γ ⊗ZC)

H0(YΓ,Ω1
YΓ

⊗Zωk
Γ)⊕H0(YΓ,Ω1

YΓ
⊗Zωk

Γ) H1(YΓ,U k
Γ ⊗ZC)

sh

sh◦

Lastly, observe that all instances of Symk
Z

(R1 fΓ,∗Z) can be replaced with Symk
Q

(R1 fΓ,∗Q) and we do so
from now onwards.

Definition 3.4. An element of H0(XΓ,ω⊗k
Γ ) is called a modular form of weight k. An element of

H0(XΓ,ω⊗k
Γ (−C )), where C denotes XΓ \ YΓ viewed as a Weil divisor on XΓ, is called a cusp form of

weight k.

Theorem 3.5. The Kodaira-Spencer map KSE /h is an SL2(R)-equivariant isomorphism.

Therefore, it descends to an isomorphism KSEΓ/YΓ : EΓ → YΓ. It then turns out that this extends to
the compactification to give an isomorphism KS

EΓ/XΓ
: E Γ→ X Γ, and consequently cusp forms can be

identified with global sections of Ω1
XΓ

⊗ω⊗(k−2)
Γ for k Ê 2.
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4. Modular curves over Q and Hecke correspondences

Define FY (N ) to be the moduli functor

Sch −→ Set

S 7→


E → S family of elliptic curves,

a pair of sections P,Q ∈ E (S)[N ] such that

(P,Q) : (Z/NZ)⊕2
S → E [N ]

is an isomorphism of group S-schemes.


/∼=

Theorem 4.1. For N Ê 3, FY (N ) is represented by a smooth affine scheme Y (N ) of pure relative dimension
1 over SpecZ[ 1

N ].

Define FY (N ;p) to be the moduli functor Sch→ Set which associates to a scheme S the isomorphism
classes of diagrams

E F

E [N ] F [N ]

(Z/NZ)S

ϕ

α α′

where (E ,α), (F,α′) ∈ FY (N )(S) and ϕ is a p-isogeny, i.e.,

• ϕ a surjective map of commutative group S-schemes,
• the effective Cartier divisor E ×F S ,→ E is of the form s1 + s2 +·· ·+ sp where si are sections of

E → S.

Theorem 4.2. For N Ê 5, FY (N ;p) is represented by an affine curve Y (N ; p) over SpecZ[ 1
N ].

The following are the universal diagrams:

E (N ) E1(N ) E2(N )

Y (N ) Y (N ; p)

SpecZ[ 1
N ] SpecZ[ 1

N ]

fN

ϕ

There are finite étale maps q1, q2 : Y (N ; p) → Y (N ) given by sending ((E ,α), (F,α′), · · · ) 7→ (E ,α) and
((E ,α), (F,α′), · · · ) 7→ (F,α′), respectively. One way to understand this is to note that the maps X (N ; p)an →
X (N )an, are finite coveringmaps of compact Riemann surfaces, and use GAGA. Here, Ei (N ) = E (N )×Y (N ),qi

Y (N ; p) for i = 1,2. For primes p ∤ N , one can informally define the Hecke correspondence Tp as
“q1,∗ϕ∗q∗

2 ”. This definition has the advantage of being “over Q”. There is a map (E ,α) 7→ (E , p−1α) which
defines an automorphism Ip : Y (N )→ Y (N ). The diamond operator 〈p〉 can be defined as “I∗p ”.
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5. Hecke action on cohomology

Define r1 and r2 so that the following diagrams are fibered

E1(N ) E (N ) E2(N ) E (N )

Y (N ; p) Y (N ) Y (N ; p) Y (N )

fN

q2

r2fNr1

q1

The action of Tp on H̃1(Y (N )an, Symk
Q

(R1 fN ,∗Q)) is the composite in the following diagram:

H̃1(Y (N )an, Symk
Q

(R1 fN ,∗Q)) H̃1(Y (N ; p)an, Symk
Q

(R1r2,∗Q)) H̃1(Y (N ; p)an, Symk
Q

(R1r1,∗Q))

H̃1(Y (N )an, Symk
Q

(R1 fN ,∗Q)) H̃1(Y (N ; p)an, q1 Symk
Q

(R1r2.∗Q))

q∗
2 ϕ∗

q1,∗

Here we are implicitly using the natural isomorphisms q∗
2 R1 fN ,∗Q∼= R1r2,∗Q and q∗

1 R1 fN ,∗Q∼= R1r1,∗Q
given by the theorem of (topological) proper base change. Also, ϕ∗ is induced from natural map
r2,∗Q→ r1,∗Q corresponding toQ→ϕ∗Q. Lastly, it is clear that diamond operators induce automorphisms
of cohomology spaces.

Remark 5.1. One naturally asks if there is a Hecke action on H1(Y (N )an, Symk
Q

(R1 fN ,∗Q)). The obstacle
with this is that we cannot use proper base change.

6. The Galois representation

To obtain the required Galois representation, we utilize the Galois action on ℓ-adic cohomology groups
and relate the same to singular cohomology groups via comparision theorems. Artin comparision
theorem tells us that

H̃1
ét(Y (N )⊗Z[1/N ]Q, Symk

Qℓ
(R1

ét fN ,∗Qℓ)) ∼= H̃1(Y (N )an, Symk
Q(R1 fN ,∗Q))⊗QQℓ.

For brevity, denote the Q-vectorspace H1(Y (N )an, Symk
Q

(R1 fN ,∗Q)) by W. By the Eichler-Shimura iso-
morphism, W ⊗QC is basically the space Sk+2(N ), along with conjugates thereof, of all cusp forms of
weight k +2 and level N , which admits a Hecke action. We just saw that Artin comparison theorem
gives a linear Gal(Q/Q)-action on the ℓ-adic completion W ⊗QQℓ. The Hecke operators are defined over
Q, so they act on W and the eigenspace decomposition of W ⊗QC is defined over Q. We remark that a
simple consequence is that Hecke eigenvalues are algebraic numbers. By the property of multiplicity
one, it follows that the Hecke eigenspace of W ⊗QC containing f is precisely the two-dimensional space
C f ⊕C f . From here, it is easily seen that the Hecke eigenspace containing f in W ⊗QQ is Q f ⊕Q f .
We also have a Hecke action on W ⊗QQℓ which commutes with the Galois action. This means that the
Hecke eigenspaces of W ⊗QQℓ are Galois invariant. Thus, we obtain a Galois representation

ρ f ,ℓ : Gal(Q/Q)→GL2(Qℓ).
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7. Étale cohomology

Let a : Y (N )→ SpecZ[1/N ] be the structure map. Consider the ℓ-adic sheaf W = R̃1
éta∗(Symk R1

ét fN ,∗Qℓ)
on SpecZ[1/N ]. Note that fN is proper and smooth. Therefore, W is a lisse ℓ-adic sheaf. Let p be a prime
not dividing ℓN . By (ind-)smooth base change [Con, Theorem 1.3.5.2], W is the étale stalk of W at the
generic point SpecQ ,→ SpecZ[1/N ] and Wp := H̃1

ét(Y (N )⊗Z[1/N ] Fp , Symk
Qℓ

(R1
ét fN ,∗Qℓ)) is the étale stalk

of W at SpecFp ,→ SpecZ[1/N ]. Since W is lisse, we have an isomorphism of Qℓ-vectorspaces W ∼=Wp .
Because of various functorialities, this isomorphism is both Hecke and Galois equivariant through a
map Gal(Q/Q)→Gal(Fp /Fp ) depending on the choice of geometric point SpecFp → SpecZ[1/N ]. Thus,
ρ f ,ℓ is unramified away from ℓN . An alternative perspective is to look at W |SpecZ[1/ℓN ] and consider the
monodromy action of πét

1 (SpecZ[1/ℓN ]) on the generic stalk W.
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