
MODULI SCHEMES OF ELLIPTIC CURVES

AYAN NATH

Abstract. We give an account of the construction of certain moduli stacks of generalized elliptic curves which
are Deligne-Mumford, proper smooth over SpecZ. Rigidifying level N structures are then imposed to get smooth
projective moduli schemes over SpecZ[1/N ]. The main reference is Deligne-Rapoport [DR].
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1. Generalized elliptic curves

Definition 1.1. A curve over a scheme S is a morphism C → S that is separated, flat, and finitely
presented with all fibers non-empty of pure dimension 1. A DR semistable genus-1 curve over S is a
proper curve f : C→ S such that the geometric fibers are connected and semistable with trivial dualizing
sheaf.

Definition 1.2. Let n Ê 1. The standard n-gon (or a Néron polygon with n-sides, or a Néron n-gon)
over SpecZ is the proper Z-curve obtained from P1

Z
×Z/nZ by gluing the ∞-section of P1

Z
× {i } to the

0-section of P1
Z
× {i +1} for each i ∈Z/nZ. The standard n-gon over an arbitrary base S is obtained by

extension of scalars.

We note that the standard 1-gon is isomorphic to the nodal cubic. The smooth locus C sm
n of the

standard n-gon (over Z), say Cn , has a natural commutative group scheme structure– it is isomorphic
to Gm ×Z/nZ. The multiplication map Gm ×Gm→Gm extends to a morphism Gm ×P1

Z
→P1

Z
. Thus, the

addition map + : C sm
n ×C sm

n → C sm
n extends to + : C sm

n ×Cn → Cn . The dualizing sheaf of a standard
n-gon over an algebraically closed field is the trivial bundle. Indeed, consider the differentials dx/x on
each copy of P1

k . Note that div dx/x = [0]+ [∞], Res0 dx/x = 1, and Res∞ dx/x =−1. Therefore, these
glue to give a nowhere-vanishing differential η on Cn . See [DM, §1] for the precise fact used.
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Lemma 1.3. Let C be a DR semistable genus-1 curve over an algebraically closed field k. Then C is either
smooth or a Néron polygon.

Proof. Let π : C̃→C be the normalization. Write C̃ =⊔d
i=1Ci for smooth proper curves Ci . We use [Har77,

Exercise IV.1.8]. That is, we have the exact sequence

0→OC →π∗OC̃ →
n⊕

j=1
k j → 0

where k j denotes the skyscraper sheaf for k at the j th node. Taking cohomology,

0→ k→
d⊕

i=1
k→

n⊕
j=1

k j →H1(C ,OC )→
d⊕

i=1
H1(Ci ,OCi )→ 0.

Taking dimensions, d = n+∑d
i=1 g (Ci ). We also know that b is either a−1 or a. If b = a−1 then a = 1 and

C is smooth. Otherwise if b = a then g (Ci ) = 0 for each i . Therefore Ci
∼=P1

k . Let ni be the number of
points on Ci above nodes. Since ωC

∼=OC , each ωCi (bi ) ∼=OP1 (bi −2) must have nonzero global sections,
which implies that bi Ê 2. This forces bi = 2 for each i and the proof is complete. □

Definition 1.4. A generalized elliptic curve over S is a triple (E ,+,e) where E is a DR semistable
genus-1 curve over S, + : E sm ×S E→ E is an S-morphism, and e ∈ E sm(S) is a section such that

• + restricts to a commutative group scheme structure on E sm with identity section e,
• + is an action of E sm on E such that on singular geometric fibers the translation action by each
rational point in the smooth locus induces a rotation on the graph of irreducible components1
(this forces the component groups of geometric fibers E sm

s to be cyclic).

A morphism in the category of generalized elliptic curves over S is an S-morphism which restricts to a
S-group morphism on the smooth loci.

Example 1.5. Let R be a DVR with uniformer π. Then

ProjR
R[X ,Y , Z ]

(Y 2Z −X (X −Z )(X −πZ ))
→ SpecR

is a generalized elliptic curve whose special fiber is a 1-gon.

For a curve f : C → S, the relative smooth locus C sm, f is exactly the locus where Ω1
C /S is singly

generated. Thus, the first Fitting ideal sheaf (see [Stacks, Tag 0C3C]) ofΩ1
C /S defines a closed subscheme

structure on C sing =C \C sm, f .

Lemma 1.6 ([DR, II, 1.5]). Let f : C→ S be a proper flat map of finite presentation. The set of s ∈ S such
that Cs is a DR semistable genus-1 curve is open.

Proof. It is well-known that fibral dimension is locally constant for proper flat maps; see, for example,
[Stacks, Tag 0D4J]. Connected fibers are detected by fibral vector space dimension of f∗OC . Reducedness
is detected by the support of f∗NC where NC denotes the sheaf of nilpotents of C . Openness of genus-1
locus comes from cohomology and base-change theorems. Therefore, we may assume that f is a
proper flat family of connected reduced genus-1 curves. Consider the restrict of f to the singular
locus f ′ : C sing→ S. This is a finite morphism. Consider the branch divisor of f ′. Since f ′ is proper,
we can find an open of S over which C sing→ S is unramified. I claim that f ′ is DR semistable over
this locus. Since all constructions in sight are compatible with base-change, it is harmless to assume

1For a topological space, the graph of irreducible components consists of the set of irreducible components as vertices where
two vertices are adjacent if the corresponding irreducible components intersect.
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S = Speck for some algebraically closed field k. We want to show the following: let C be a projective
curve over k and C sing be its singular locus closed subscheme defined by the first Fitting ideal. Then
the complement of the nonreduced points of C sing is a nodal curve, which is same as saying that the
first Fitting ideal of ΩC /k,p in OC ,p is equal to the maximal ideal if and only if p is a node. Choose a
presentation k�x0, x1, . . . , xn�/( f1, . . . , fd ), d Ê n, of ÔC ,p such that n is minimal. Observe that no fi can
contain nonzero constant or linear terms. For if fi = X (c + g1)+ g2 where c ∈ k then we can invert c + g1

to contradict the assumption that n is minimal. It is well-known and easy to show that Ω̂C ,p is isomorphic
to the cokernel of the Jacobian matrix of f1, f2, . . . , fd , which is a matrix valued in mp . The Fitting ideal
is generated by n ×n minors of this matrix. Therefore, for the Fitting ideal to equal mp we must at least
have n = 1. By routine methods (for e.g., k(x0)�x1� is a PID, etc) we can take d to be 1. Therefore, we
seek to understand when (x0, x1) equals (∂ f1/∂x0,∂ f1/∂x1). It’s clear that this happens when p is a node,
that is, f1 = x0x1. Conversely, when (x0, x1) = (∂ f1/∂x0,∂ f1/∂x1), x0 and x1 can be written as k-linear
combinations of ∂ f1/∂x0 and ∂ f1/∂x1 due to degree reasons. Hence, we can make a linear change of
variables so that ∂ f1/∂x0 = x1 and ∂ f1/∂x1 = x0. Then f1 = x0x1 and it follows that p is a node. □

Definition 1.7. For a curve f : C→ S, the locus of non-smoothness of f is the scheme-theoretic image
S∞, f , or simply S∞ when f is clear from the context, of C sing.

It is clear that S∞ is a closed subscheme and a fiber Cs for a geometric point s ∈ S is singular if and
only if s ∈ S∞. The following technical result is incredibly useful in understanding generalized elliptic
curves.

Lemma 1.8 ([DR, II.1.15]). Let f : E→ S be a generalized elliptic curve. Then there is a locally finite
family (S∞

n )nÊ1 of closed subschemes of S such that S∞ = ⋃
S∞

n such that E ×S S∞
n is fppf-locally on S∞

n
isomorphic to the standard n-gon over S∞

n .

Lemma 1.9. Let f : E→ S be a generalized elliptic curve. The formation of S∞
n is compatible with base

change on S. In particular, the formation of S∞ is compatible with base change.

Proof. Let T → S be a morphism and fT : ET → T be the base changed f and ET → E be g . There is a
canonical closed embedding T ∞→ S∞×S T. Since g−1 Fitt1ΩE/S ·OET = Fitt1ΩET /T [Stacks, Tag 0C3D],
it follows that E sing

T = E sing ×S T. After taking scheme-theoretic images, it follows that there is a closed
embedding T ∞ ,→ S∞×S T. We wish to show that this is an isomorphism. One can do this fppf-locally
on S∞. By Lemma 1.8, this shows that formation of S∞ is compatible with base change on S. We rewrite
our isomorphism as ⊔

T ∞
n

∼−→⊔
S∞

n ×S T. If p ∈ T ∞
i ∩ (S∞

j ×S T ) for i ̸= j then the geometric fiber over p

must simultaneously be an i -gon and a j -gon. It follows that i = j and that T ∞
n = S∞

n ×S T. □

Let (E ,+,e) be a generalized elliptic curve over S. Then the morphism

n : E sm→ E sm, x 7→ nx

is fiberwise flat, hence flat (c.f. Theorem B.5). Therefore, the scheme-theoretic kernel E [n] is a
closed-subscheme and is S-flat. If E is the standard n-gon over S then E sm ∼= Gm ×Z/mZ and hence
E [n] ∼=µn ×Z/gcd(n,m)Z.

Lemma 1.10 ([DR, II.1.19]). Let f : X → S be a quasi-finite, flat, and separated morphism, with S
noetherian. If the rank of the fibers of f is constant, then f is finite.

Proof. We first show that f is proper. According to the valuative criterion of properness, we can assume
that S = SpecR for a DVR R. By Zariski’s main theorem, X is an open subset of a finite S-scheme X that
we can even take to be flat over S. Comparing the ranks of the special and generic fibers of X and X , we
find that X = X . □
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Corollary 1.11 ([DR, II.1.20], [KM, Theorem 2.3.1]). Let p : E→ S be a generalized elliptic curve and n
an integer. We assume that, for every geometric point s ∈ S, Es is smooth, or an m-gon with n | m. Then,
E [n] is locally free of rank n2 over S

Lemma 1.12 ([DR, II.1.17]). Let X be a generalized elliptic curve over S with a unit section e. Let
u : Y → X be a finite étale covering of X with a section e ∈ Y (S) above e. Suppose that the geometric fibers
of Y /S are connected. Then, there exists a unique structure of a generalized elliptic curve on Y with unit e,
such that the diagram

Y reg ×S Y
+−→ Y

↓ ↓ u

X reg ×S Y
+−→ X

is commutative.

Let R be a complete DVR with an algebraically closed residue field. Set S = SpecR, η its generic point,
and s its closed point. For any finite extension κ(η′) of κ(η), we denote by (S′,η′, s′) the normalization of
S in η′. Let Eη be an elliptic curve over η . We say that Eη has stable reduction if the minimal model of
Eη over S is DR semistable genus-1.

Theorem 1.13 ([DR, IV.1.6]). (i) There exists a finite extension κ(η′) of κ(η) such that the curve Eη′ =
Eη×η η′ has stable reduction over η′.

(ii) If Eη has stable reduction, the minimal model E of Eη over S has a unique structure of a generalized
elliptic curve extending that of Eη.

(iii) If, furthermore, the n-torsion points of Eη are defined over κ(η), then either the minimal model E of E
over S is smooth, or Es is an m-gon, with n | m, and there exists a generalized elliptic curve E over S,
with a smooth special fiber or an n-gon, and an isomorphism α of its generic fiber with Eη.

(iv) The pair (E ,α) is unique up to a unique isomorphism.

If C→ S a stable curve of genus one, with irreducible geometric fibers, and for e ∈C sm(S), there exists
on C a unique structure of generalized elliptic curve with unit section u:

Theorem 1.14 ([DR, II.2.7]). (i) Let p : E → S be a genus-1 curve with geometrically integral fibers
and e ∈ E sm(S). There exists a unique group law + : E sm ×E→ E such that, on S and after any base
change, for x ∈ E sm(S) and y ∈ E(S), one has

m(x + y) ∼ m(x)⊗m(y)⊗m(e)∨,

locally over S, where m(s) is the ideal sheaf cutting out s(S) for a section s : S→ E .
(ii) This law makes E sm a commutative group scheme with unit e acting on E ; for this action, E sm acts

trivially on Pic0
E/S .

(iii) The inversion x 7→−x of E sm extends to E , for t ∈ E(S), locally on S, we have

m(−t ) ≃Hom (m(t ),OE (−2e))

(iv) If E/S is stable, + is the unique group structure on the generalized elliptic curve E with unit e.

2. Deformation theory of generalized elliptic curves

See Appendix A for a review of basic deformation theory. Fix a complete local ring Λ with residue field
k. Let E0 be a generalized elliptic curve over k. We suppose that E0 is either smooth or the standard
n-gon. The deformation functor D̂efE0 of (E0,+) is defined as follows: for A ∈ Ob ĈΛ, D̂efE0 (A) is the set
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of isomorphism classes of fibered diagrams

(E0,+) (E ,+)

Speck Spec A

where E→ Spec A is a generalized elliptic curve and (E0,+) its special fiber. The infinitesimal deformation
functor DefE0 is the restriction of D̂efE0 to CΛ. By taking F = DefE0 in Appendix A, we can talk about
local, infinitesimal, formal, versal, universal deformations, etc.

Theorem 2.1. Suppose E0 is smooth or n is relatively prime to chark. Then

(i) (E0,+) has no nontrivial infinitesimal automorphisms, i.e., if (E ,+)→ Spec A is an infinitesimal
deformation of (E0,+) then any A-automorphism of (E ,+) is identity.

(ii) DefE0 is is represented by a formal generalized elliptic curve over SpfΛ�t�.
(iii) DefE0 is effectively prorepresentable (see Definition A.2).
(iv) if E0 is singular, we can choose t so that t = 0 is the image of E sing

0 .

Proof. We first consider the case when E0 is irreducible, i.e., either an elliptic curve or a nodal cubic.
Thanks to Theorem 1.14, we can identify DefE0 with the infinitesimal deformation functor D = Def(E0,e)

of the pointed curve (E0,e), where e is the unit section of E0.

(i) One can use Theorem A.10 but we give a simpler proof. We can write the residue map A→ k
as a composite of small thickenings (see Definition A.7). Let 0→ (t )→ Ã→ A→ 0 be a small
thickening in CΛ and Ẽ→ Spec Ã and E→ Spec A be deformations compatible with Ã ↠ A. Let θ be
an Ã-automorphism of Ẽ which restricts to identity over Spec A. Then we have an OSpec Ã-algebra
automorphism θ∗ : OẼ →OẼ which is identity modulo t . Therefore, we can write θ∗(x) = x + t dx
where d: OẼ →OE0 is an Ã-derivation. However,

DerÃ(OẼ ,OE0 ) = HomOẼ -mod(Ω1
Ẽ/Ã

,OE0 ) = HomOE0 -mod(Ω1
E0/k ,OE0 ) = Derk (OE0 ,OE0 ).

Since θ fixes the unit section, the admissible derivations d: OE0→OE0 must map the ideal sheaf
cutting out the unit section into itself. By identifying Derk (OE0 ,OE0 ) ∼= H0(OE0 ,Ω∨

E0/k ), this is same
as specifying a vector field on E0 vanishing at the unit section. If E0 is smooth then all vector fields
are constant since ΩE0/k is trivial, and hence d = 0. If E0 is the 1-gon with p the node, consider
its normalization P1

k→ E0. We have an exact sequence 0→OE0,p→OP1
k ,0 ⊕OP1

k ,∞→ k→ 0 which
can be verified at completions, and via this we can view local uniformizers x and 1/x on P1

k as
elements of OE0,p . Let D ∈ Derk (OE0 ,OE0 ) vanishing at e. Then we have 0 = 1

x D(x)+xD(1/x). This
implies that D(x) ∈ (x) and D(1/x) ∈ (1/x). Thus, D defines a derivation on P1 which vanishes at 0,
∞, and the preimage of the unit section. Since degΩ∨

P1
k

= 2, it follows that D = 0.

(ii) We show that D is prorepresentable using Schlessinger’s criterion (Theorem A.8) and Theorem
A.10. (H0) is trivial. (H3) is immediate because Ext1

OE0
(ΩE0/k ,OE0 (−e)) is a finite dimensional vector

space. The group Ext2
OE0

(ΩE0/k ,OE0 (−e)) ∼= Ext2
OE0

(ΩE0/k (e),OE0 ) is zero due to Serre duality and
because the dualizing sheaf is trivial. This means that there is no obstruction to lifting infinitesimal
deformations. We now verify (H4). Consider a fibered product diagram of Artin rings

Ã1 Ã2

A1 A2

r̃

π1

r

π2
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where πi are small thickenings. We want to verify that D(Ã1)→D(A1)×D(A2) D(Ã2) is a bijection.
We may assume that D(A1)×D(A2) D(Ã2) is nonempty because otherwise there is nothing to do.
Let (E A1 ,E Ã2

) ∈ D(A1)×D(A2) D(Ã2) and say (the class of) E A1 restricts to (the class of) E A2 ∈ D(A2).
Because there is no obstruction to lifting, it follows that we have a composite isomorphism

D(π2)−1[E A2 ]
∼−→ {lifts of E A2 to Ã2}

∼←−−−−
−⊗Ã1

Ã2

{lifts of E A1 to Ã1}
∼−→D(π1)−1[E A1 ].

Hence, there is some class [E Ã1
] ∈ D(π1)−1[E A1 ] mapping to E Ã2

. Therefore, the inverse of the above
composite can be viewed as D(r̃ ) This shows that (H4) is satisfied. We conclude that D is prorepre-
sentable. Due to no obstruction to liftings, D is formally smooth, which by Lemma A.9 means that
D is prorepresented by a power series algebra over Λ. The number of indeterminants in this power
series algebra is then precisely dimk D(k[ε]/(ε2)) = dimk Ext1(ΩE0/k (e),OE0 ) = dimk H0(E0,ΩE0/k (e))
(Serre duality). If E0 is smooth then this is just 1. Else if E0 is the standard 1-gon, consider
the normalization map π : Ẽ0→ E0. We know that P1 ∼= Ẽ0. Then the map ΩE0 (e)→π∗ΩẼ0

(e) is a
surjective map with a length 1 kernel supported at the node of E0. By the long exact sequence in
cohomology, it follows that H0(E ,π∗ΩE0 (e)) ∼= H0(P1,ΩP1 (e)) = 0.

(iii) We apply Grothendieck’s existence theorem (Theorem A.6). If a formal generalized elliptic curve
X→ SpfΛ�t� prorepresents DefE0 then may we take L = OX(Xsm[n]) which is relatively ample
modulo each t n (c.f. Theorem B.5). Therefore, we get a curve over SpecΛ�t� with a designated
‘unit’ section, except that we need to show that it’s DR semistable of genus 1 and ‘algebraize’ the
formal group law too. It’s DR semistable genus-1 by Lemma 1.6 because it is so over SpecΛ�t�/(t ).
The group law is taken care of by Theorem 1.14.

(iv) Of course, E0 is a 1-gon. The deformation theory of nodes (see [DR, I.5]) tells us that exists an
element u ∈Λ�t�] such that u = 0 is the image of the non-smooth locus of E . By Lemma 1.8, on
SpecΛ�t�/(u), E is isomorphic to the inverse image of the standard 1-gon. The universal property
of Λ�t� then implies that SpecΛ�t�/(u) is unramified over SpecΛ, hence Λ�t� is isomorphic to
Λ�u�. This completes the proof for the irreducible case of E0.

The general case: Let E0 be the standard n-gon over k and H0 the cyclic subgroup {1}×Z/nZ.
Denote by Def(E0,H0) the infinitesimal deformation functor of (E0,+, H0): it takes A ∈CΛ to the set of all
isomorphism classes of triplets (E ,+, H), where (E ,+) is a generalized elliptic curve over A and H ⊆ E sm

a subgroup isomorphic to (Z/nZ)A , together with an isomorphism of the special fiber with (E0,+, H0).
The canonical morphism Def(E0,H0)→DefE0 is an isomorphism. Indeed, E [n] is a finite étale commutative
group scheme over A since n is invertible on A. In particular, it must be the disjoint union of finitely many
“thickened points”– this follows from imitating the standard proof of the structure theorem for finite
étale algebras over a field. Therefore, given a subgroup of E0[n] we can extend it to a closed subgroup
of E [n] simply by replacing each point p ∈ E0[n] by the connected component of E [n] it is contained
in. It is easily seen that this extension is unique. Let (E ,+, H) be as above over Spec A. The group H
acts freely on E (since H0 acts freely on E0), so E/H (which exists as E is projective) is flat over A. The
operation + passes to the quotient, and (E/H ,+) is a deformation of the 1-gon (E0/H0,+). Denoting
D1 as the infinitesimal deformation functor of (E0/H0,+), we thus obtain a morphism Def(E0,H0)→D1.
We claim that this is a natural isomorphism. Given an infinitesimal deformation (E ,+)→ Spec A of the
standard 1-gon (E0/H0,+), consider the morphism E0→ E0/H0 ,→ (E ,+), by topological invariance of
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the étale site (Theorem B.1), it follows that there is a unique étale morphism E ′→ E extending E0→ E .

E0 E ′

E0/H0 E

Speck Spec A

ét. ét.

By Lemma 1.12, there is a unique structure of a generalized elliptic curve E ′ which is compatible with
the above diagram. Then Ker(E ′→ E) is a deformation of H0 and it follows that Def(E0,H0) ≃ D1.

Concluding, DefE0 is isomorphic to D1 and thus satisfies (ii) & (iii). Assertion (iv) follows from a
similar assertion for D1, since the image of the nonsmooth locus is the same for E and E/H . □

3. Representibility theorems

Let M be the fibered category of groupoids over the category of schemes Sch taking a scheme S to the
groupoid of generalized elliptic curves over S.

Lemma 3.1. M is a stack for the fpqc site.

Proof. Let S′→ S be an fpqc morphism and p ′ : E ′→ S′ be a generalized elliptic curve equipped with
descent data. By faithfully flat descent of closed subschemes, for each n Ê 1, S′∞

n of Lemma 1.8 descends
to a closed subscheme of S which we call S∞

n . The local finiteness assertion of Lemma 1.8 lets us
replace S by an open subscheme and assume that all fibers of p ′ are either smooth or n-gons, n fixed.
The subscheme E ′[n] of E ′ is then finite over S′ (c.f. Corollary 1.11) and intersects each irreducible
component of each geometric fiber of p ′. Hence, OE ′(E ′[n]) is a relatively ample invertible sheaf (c.f.
Theorem B.4) which is also equipped with a descent data. We are now done by faithfully flat descent of
quasi-projective schemes (c.f. Theorems B.3 and B.2). □

Let M∗ be the substack of M which classifies generalized elliptic curves E→ S such that, for every
geometric point s ∈ S, the characteristic of κ(s) is either 0 or doesn’t divide the number of irreducible
components of the geometric fiber Es . For each n Ê 1, the standard n-gon over Z defines a morphism
SpecZ[1/n]→M∗ which we call fn . This is a closed embedding of stacks.

The main theorem of this section is

Theorem 3.2. (i) M∗ is a smooth Deligne-Mumford stack over SpecZ.
(ii) The image M∞∗ of the non-smooth locus of the universal generalized elliptic curve over M∗ is the union

of the images of fn , n Ê 1.

We want to use Artin’s criterion for this–

Theorem 3.3 (Artin’s criterion). Let S be a scheme of finite type over a field or an excellent Dedekind
domain. Let X be a category fibered in groupoids over Sch/S . Then X is a Deligne-Mumford stack locally of
finite type over S if and only if the following conditions hold:

(1) X is a stack for the étale site.
(2) X is locally of finite presentation, that is, for every filtered inverse system of affine schemes Spec Ai

in Sch/S , the canonical functor
colimi X(Spec Ai )→X(lim

i
Spec Ai )
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is an equivalence of categories.
(3) Suppose ξ and η are two objects in X(U ), where U is a finite type S-scheme. Then IsomU (ξ,η) is

an algebraic space locally of finite type over S, where Isom: Schfpqc
/U → Sets takes a U -scheme X to

the set of X -isomorphisms ξ×U X → η×U X .
(4) For each field k0 of finite type over S (that is, Speck0 → S is finite type) with a 1-morphism

ξ0 : Speck0→X, there exist a complete local ring R, a morphism u from the spectrum of a finite
separable extension k ′

0 of k0 to the closed point s of SpecR, and a commutative diagram

Speck ′
0 Speck0

SpecR X

u ξ0

ξ

with ξ formally étale at s.
(5) If ξ is a 1-morphism from a finite type S-scheme U to X, and if ξ is formally étale at a point u (of

U) of finite type over S, then ξ is formally étale in a neighborhood of u (in U).

Sketch (one direction). Suppose X satisfies conditions (1)-(4). Let p be a point of X which is finite type
over S. (4) can be interpreted as saying that we can find a p-finite point q such that there is an effective
universal formal deformation (R,ξ) of q ,→X, where R is a complete local ring with closed point q. Then
(2) and [Art70, Theorem 1.6] tells us that (R,ξ) is algebraizable, say by (Xp , xp ,ξp ). Also, ξp is formally
étale at xp by (4). Using (5), we can shrink Xp to assume that ξp is formally étale everywhere. In fact,
this means that ξp is representable and étale due to (3). Finally, one verifies that ⊔

p Xp is an étale cover
of X. □

Remark 3.4. (i) If the finite type residue fields of S are perfect, we may replace (4) with the following
condition:
(4’) Let s ∈ S and k0 a finite extension of κ(s). We suppose that u : Speck0→ S is of finite type. By

hypothesis, κ(s) is also perfect and k0/κ(s) is separable. There exists a unique complete local
ring Λ(k0) with residue field k0 together with a formally étale morphism u : SpecΛ(k0)→ S
extending u (this comes from the theory of Witt vectors). For ξ0 ∈ ObX(k0), we denote
by Def ξ0 the following ‘deformation category’ over the opposite category Ĉ

◦
Λ(k0): for A ∈

Ob ĈΛ(k0), the objects of Def ξ0(A) are the objects ξ of X(A), equipped with an isomorphism
ξ0

∼−→ (image of ξ in X(k0)). Then condition (4) is the conjunction of the following:
(4’a) the objects of X have no infinitesimal automorphisms; more precisely, for k0 and ξ0 as

above, and ξ′0 the pullback of ξ0 over k0[ε]/(ε2), we have Autξ′0
∼−→Autξ0. This condition,

and (3), implies that objects of Def ξ0 have no nontrivial automorphisms.
(4’b) for k0 and ξ0 as above, the functor

A 7→ set of isomorphism classes in Def ξ0(A)

is effectively prorepresentable (by a local complete ring R and ξ ∈X(R) mapping to ξ0).
(ii) If S is of finite type over a field or an excellent Dedekind ring with an infinite number of primes,

and if all possible complete local rings R appearing in condition (4’b) are normal and of same Krull
dimension, then we can remove condition (5).

Proof of Theorem 3.2. (i) We verify the conditions of Theorem 3.3 and Remark 3.4 with S = SpecZ.
(1) Immediate by Lemma 3.1.
(2) Follows from standard arguments (c.f. [EGA, IV, 8.8]).
(3) By [Art70, Corollary 6.2], we know that HilbX /S is representable by an algebraic space locally

of finite presentation over S when X → S is a morphism of algebraic spaces locally of finite
presentation. There is a morphism of functors MorU (ξ,η)→Hilbξ×Uη/U induced by associating
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to each morphism its graph. It is then easily verified that this is an open embedding using
[Stacks, Tag 05XD]. There is a morphism

MorU (ξ,η)×U MorU (η,ξ)→MorU (ξ,ξ)×U MorU (η,η)

given by ( f , g ) 7→ (g f , f g ). Then IsomU (ξ,η) is just the preimage of the U -point (idξ, idη)
under the above morphism. Of course, since generalized elliptic curves only have finitely
many automorphisms, IsomU (ξ,η) is also quasi-finite over U . See [Con07, Theorem 3.1.2] for
another proof.

(4’) Let k0 be a finite type field over SpecZ, which in particular must be a finite field.
(4’a) Theorem 2.1 (i).
(4’b) Theorem 2.1 (iii).

(5) According to Theorem 2.1 (ii), the deformation functors are prorepresented by regular rings
of dimension 2. By Remark 3.4 (ii), condition (5) is automatically satisfied.

(ii) Let E→M∗ be the universal generalized elliptic curve. Choose an atlas M →M∗ and a point
m ∈ M . It suffices to show that M is Z-smooth. Let E0 =E×M∗ m and E =E×M∗ Spec ÔM ,m . I claim
that E → Spec ÔM ,m is a universal formal deformation for E0→m. Indeed, if E → Spec A is an
infinitesimal deformation of E0→m then of course we get a morphism Spec A→M∗. By formal
étaleness, this lifts to a morphism Spec A→M . By universal property of completions, this factors
through Spec ÔM ,m . It follows that E → Spec ÔM ,m is a universal formal deformation. By Theorem
2.1 (iii), it follows that ÔM ,m

∼= W �t� where W = κ(m) if charκ(m) = 0 or the unique complete
regular local ring with residue field κ(m) otherwise. Thus, M is Z-smooth.

By Lemma 1.9, there is a universal ‘nonsmooth locus’ closed substack M∞∗ of M∗ which is a
‘disjoint union’ of M∞∗,n ,n Ê 1. □

4. Level n structure

Denote by M(n) the stack over Z[1/n] classifying generalized elliptic curves C /S, with geometric fibers
smooth or n-gons.

Proposition 4.1. M(n) is a Deligne-Mumford stack proper and smooth over SpecZ[1/n]. Its ‘locus at
infinity’ M∞

(n) =M(n) ∩M∞∗ is the image of fn .

Proof. By Lemma 1.9, M(n) is an open substack of M∗. Hence, it’s a Deligne-Mumford stack smooth
over SpecZ[1/n] and fn defines a section of M(n)→ SpecZ[1/n]. Properness follows from Theorem 1.13
and the valuative criterion. □

For a generalized elliptic curve E → S with geometric fibers smooth or n-gons, n invertible on S,
E sm[n] is a finite étale S-group of rank n2 (c.f. Corollary 1.11). It is well known that finite étale group
schemes are twisted constants.

Definition 4.2. Using the above notations, a level n structure is an S-group isomorphism (Z/nZ)2
S

∼−→
E sm[n].

In particular, any E→ S with n invertible on S admits a level n structure étale-locally over S.

Definition 4.3. Mn[1/n] be the following stack over Z[1/n]: for S a scheme on which n is invertible,
Mn[1/n](S) is the groupoid of generalized elliptic curves E/S with geometric fibers either smooth or
n-gon, equipped with a level n structure.
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It is clear that the natural map Mn[1/n]→M(n) is representable. Indeed, for any morphism from a
scheme U→M(n) with corresponding family E→U , U ×M(n) Mn[1/n] is essentially the functor of level
n structures on E/U . This functor is an étale sheaf. So, we may assume that E sm[n] ≃ (Z/nZ)2

U . Then
the functor in discussion is represented by SpecZ[1/n]× I where I is the (index) set of all Z/nZ-basis
for (Z/nZ)2. Hence, Mn[1/n] is a Deligne-Mumford stack which is a GL2(Z/nZ)-torsor over M(n). By
Lemma 1.9, we can form M∞

n [1/n], the image of nonsmoothness locus, which can be also viewed as the
‘pullback’ of M∞

(n). The following result is a direct consequence of Proposition 4.1–

Theorem 4.4. Mn[1/n] is a Deligne-Mumford stack proper and smooth over SpecZ[1/n], and M∞
n [1/n]

is finite étale over SpecZ[1/n].

When n Ê 3, all automorphisms are killed. Indeed, if E/k, k algebraically closed, then any automor-
phism σ : E→ E which fixes 5 closed points must be identity. For any rational function f ∈ K (E), f −σ∗ f
is either constant or has least 5 zeroes, which is same as saying it is constant or has at least 5 poles. If
p ∈ E is a closed point not fixed by σ, then a routine application of Riemann-Roch gives us a nonconstant
rational function f which has a double pole at p and no poles elsewhere. This forces σ= id. Secondly, an
automorphism of the standard n-gon Cn/k which pointwise fixes the n-torsion subgroup µn ×Z/nZ is
obviously just the identity. By [Stacks, Tag 04SZ], it follows that Mn[1/n] is a proper smooth algebraic
space over SpecZ[1/n] of pure relative dimension 1 (c.f. Theorem 2.1 (ii)).

Theorem 4.5. Let R be a Dedekind domain and let X → SpecR be a proper flat morphism with X a regular
algebraic space whose fibers are of pure dimension 1. Then X is an R-projective scheme.

Sketch (from [MO207443]). It is sufficient to show that X is a scheme due to [Lic68, Theorem 2.8].
We first solve it for the case when R is a DVR, say with fraction field K , maximal ideal m, residue field k,
then use standard arguments to prove the general case. Roughly, the idea is to pick any nonzero prime
ideal p⊂ R, find an ample divisor D on X such that the dual of the invertible sheaf corresponding to D
is ample on X ⊗R Rp, which by general spreading out techniques (c.f. Theorem B.4) gives us that the
same invertible sheaf is ample over an open neighborhood U of p. Since dimR = 1, the complement of
U only has finitely many closed points, and for each of them we get analogous divisors Di by using
the DVR case, then the problem is solved by considering D +∑

Di . By [Ols16, Exercise 7.D], we know
that Xk is a scheme. Let {C1, . . . ,Cn} be the irreducible components of Xk with reduced structure. Let
xi ∈Ci be a closed point and (Ui , xi )→ (X , xi ) be an affine étale neighborhood of xi that is a scheme,
which is identity modulo m. In particular, Ui is a regular affine curve over R. Shrink Ui so that its
special fiber doesn’t intersect Ci ∩C j for each i ̸= j . By going-down, we can choose a closed point
ui ∈ (Ui )K whose closure in Ui contains xi . Therefore, the image ξi ∈ XK is a closed point whose closure
in X contains xi . The closure of ξi , say Di , in X has an invertible ideal sheaf Ii since X is regular.
Consider L =I ∨

1 ⊗I ∨
2 ⊗·· ·⊗I ∨

n . Each Di is flat over R, therefore the divisor associated to Lk is simply
x1 +x2 +·· ·+xn , which has to be ample. We have the exact sequence

0→F ⊗L ⊗m ·π−−−−→F ⊗L ⊗m→Fk ⊗L ⊗m
k → 0

for any R-flat sheaf F . The long exact sequence in cohomology together with Nakayama gives H1(X ,F⊗
L ⊗m) = 0 by cohomological criterion for ampleness for all large enough m0. This implies that L ⊗m is
globally-generated and H0(X ,L ⊗m)⊗R k

∼−→H0(Xk ,L ⊗m
k ) is an isomorphism for all large m Ê m0 There

is an R-morphism f : X → ProjR H0(S,L m0 ) whose formation commutes with mod m reduction. On the
special fiber, it is given by L ⊗m0

k , and hence it is quasi-finite. However, for any finite type morphism
between Noetherian algebraic spaces, the quasi-finite locus is open on the source [EGA, IV3, 8.10.5
(xi)]. Therefore, X being proper over R, we must have that f is quasi-finite. By Stein factorization, f can
be factored as X → Spec f∗OX → ProjR H0(S,L m0 ) where the the first morphism is an open embedding.
In particular, X must be a scheme. □

Corollary 4.6. For n Ê 3, Mn[1/n] is a smooth projective scheme over Z[1/n].
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Appendix A. Deformation theory

In what follows, functors are always covariant unless otherwise specified. Let Λ be a complete local ring
with residue field k. It is safe to assume Λ= k. Denote by CΛ the category of Artin local Λ-algebras with
residue field k and by ĈΛ the category of Noetherian complete local Λ-algebras with residue field k. A
functor F : CΛ→ Sets extends to ĈΛ by setting

F̂ (R) = lim
n→∞F (R/mn),

for (R,m) ∈ Ob ĈΛ. For each (R,m) ∈ Ob ĈΛ, we denote by hR the functor Hom(R,−) from CΛ to Sets.

Lemma A.1. For a functor F on CΛ and R ∈ Ob ĈΛ, the canonical map F̂ (R)→Mor(hR ,F ) is an isomor-
phism.

Proof. Straightforward. Omitted. □

Definition A.2. A functor F : CΛ→ Sets is called prorepresentable if there exists R ∈ Ob ĈΛ and ξ̂ ∈ F̂ (R)
that induces a natural isomorphism ξ̂ : hR

∼−→ F. We call F effectively prorepresentable if ξ̂ can be
chosen to be in Im(F (R)→ F̂ (R)).

Consider a functor F : ĈΛ→ Sets and ξ0 ∈ F (k).

Definition A.3. An infinitesimal deformation of ξ0 is an element η ∈ F (A), A ∈ ObCΛ, that is mapped to
ξ0 under the residue map F (A)→ F (k). A formal deformation of ξ0 is an element ξ̂ ∈ F̂ (R), R ∈ Ob ĈΛ,
that is mapped to ξ0 under the residue map F̂ (R)→ F̂ (k)

=−→ F (k).

Definition A.4. A formal deformation ξ̂ ∈ F̂ (R) is called versal (respectively, universal) if it has the
following property: let A′→ A be a surjection of Artin local Λ-algebras in CΛ, η′ ∈ F (A′) any infinitesimal
deformation of ξ0, and η ∈ F (A) the infinitesimal deformation of ξ0 induced by η′. Then each map R→ A
that induces η ∈ F (A) via ξ̂ ∈ F̂ (R) can be lifted (respectively, uniquely lifted) to a morphism R→ A′ such
that η′ is induced by R→ A′.

Proposition A.5. Let (R,m,k) be a complete local ring and suppose we are given a formal deformation of
X0 over R, that is, for each n Ê 0, schemes Xn flat and of finite type over R/mn+1 and maps Xn→ Xn+1

inducing isomorphisms Xn
∼−→ Xn+1 ⊗R/mn+2 R/mn+1. Then there is a Noetherian formal scheme X, flat over

SpfR, such that for each n Ê 0, we have Xn
∼=X⊗R Rn .

If in addition, there is a collection of coherent sheaves Fn on Xn (respectively locally free, respectively
invertible), flat over R/mn+1, and maps Fn

∼=Fn+1 ⊗R/mn+2 R/mn+1, then F = limFn will be a coherent
(respectively locally free, respectively invertible) sheaf on X.

Theorem A.6 (Grothendieck’s existence theorem). Let X be a formal scheme, proper over SpfR, where
(R,m,k) is a complete local ring, and suppose there exists an invertible sheaf L on X such that L0 =L ⊗R k
is ample on X0 =X⊗R k. Then there exists an R-scheme X , together with an ample invertible sheaf L1,
such that (X,L ) is the formal completion of (X ,L1) along the closed fiber over R.

Definition A.7. A surjection f : R ′ ↠ R in CΛ is a small thickening if Ker f ∼= k, or equivalently,
mR ′ Ker f = 0 and Ker f is principal, where mR ′ is the maximal ideal of R ′.

It is easily verified that all surjections in CΛ are composites of small thickenings.

Theorem A.8 (Schlessinger’s criterion). A functor F : CΛ→ Sets is prorepresentable if and only if
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(H0) F (k) is a singleton set.
(H3) the tangent space TF = F (k[ε]/(ε2)) is a finite-dimensional k-vector space.
(H4) F (A′×A A′′)→ F (A′)×F (A) F (A′′) is bijective for every map A′→ A and small thickening A′′ ↠ A.

Lemma A.9 ([Sch68, Prop. 2.5 (i)]). Let R→ S be a map in ĈΛ. Then hS→ hR is formally smooth if and
only if S is a power series algebra over R.

Let (A,m,k) be an Artin local ring and A′ be a small thickening of the same. Let X0 be a generically
smooth finite-type lci k-scheme. We remark that if k is perfect then being generically smooth is equivalent
to being reduced due to generic smoothness. A lifting of an A-scheme X , with special fiber isomorphic
to X0, to A′ is a scheme X ′ flat over A′ with a closed embedding X ,→ X ′, which induces an isomorphism
of X with X ′|Spec A over A.

The deformation theory of local complete intersections has been worked out in detail in [Vis99].
Consider the following setup: let Z ′ be a flat scheme over A′, and set Z = Z ′|Spec A. Let X be a flat lci
scheme of finite type over A with a closed embedding Z ,→ X . Assume also that X0 is generically smooth
over κ. A lifting of X relative to Z ′ is a lifting X ′ of X with a closed embedding Z ′ ,→ X ′ extending the
given embedding of Z in X . An isomorphism of relative liftings is an isomorphism of lifting inducing the
identity on Z ′. Again, let J0 be the ideal sheaf of Z0 in X0.

Theorem A.10 ([Vis99, 5.4]). (a) There is a canonical element ω ∈ Ext2
OX0

(ΩX0/κ, J0), called the obstruction,
such that ω = 0 if and only if a lifting exists.

(b) If a lifting exists, then there is a canonical action of the group Ext1
OX0

(ΩX0/κ, J0) on the set of
isomorphism classes of liftings making it into a principal homogeneous space.

Appendix B. Facts from EGA and SGA

Theorem B.1 (Topological invariance of étale site, [EGA, IV, 18.1.2], [Stacks, Tag 039R]). Let S be
a scheme, S0 a closed subscheme of S whose underlying space is identical to that of S. Then the functor
X 7→ X ×S S0 from the category of S-étale schemes to the category of S0-étale schemes is an equivalence.

Theorem B.2 ([SGA1, VIII.5.2]). Let F be the fibered category of morphisms in the category of schemes (VI
11.a). Then, every morphism g : S′→ S that is faithfully flat and quasi-compact is a morphism of F -descent
(or, as commonly said, a descent morphism in Sch).

Theorem B.3 ([SGA1, VIII.7.8]). Let g : S′→ S be a morphism that is faithfully flat and quasi-compact.
Then, g is an effective descent morphism for the fibered category of quasi-compact schemes Z over a scheme
T , equipped with an ample relative invertible sheaf with respect to T . In particular, for any scheme X ′ over
S′ endowed with a descent data relative to g : S′→ S, and any invertible sheaf L′ on X ′ ample relative to S′
also equipped with a descent data relative to the given data on X ′ (i.e., equipped with an isomorphism of
q∗

1 (L′) with q∗
2 (L′) satisfying the usual transitivity condition), the descent data on X ′ is effective. Moreover,

the invertible sheaf L on the descended scheme X , obtained by descent from L′, is ample relative to S.

Theorem B.4 ([EGA, IV3, 9.6.4]). Let X → S be a proper morphism of finite presentation along with a
given line bundle on X . The locus of points on the base for which the line bundle is ample on fibers is open,
and over that open subscheme it is relatively ample.

Theorem B.5 ([EGA, IV, 11.3.10, 17.9.1]). Suppose X ,Y are flat and of finite presentation over T and
f : X → Y be a T -morphism. Then, let P be a property in {flat, smooth, etale, open immersion, isomorphism,
flat and a relative complete intersection morphism}, then f has property P if and only if each ft has P for
all geometric points t ∈ T.
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