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1 Introduction

In this expository report, we discuss a short proof of the Hochster-Roberts theorem (see Theorem
1.6) given in Knop’s unpublished note [3] written in German. Section 1 introduces and defines some
algebraic notions just enough to understand the statement of Theorem 1.6, and Section 2 provides a
rapid review of the background needed for the proof. The reader may skip to Section 3 for the main
proof.

1.1. Notation. The letters A, B , C , R, and S always denote commutative unital rings and k denotes a
field. For maximal ideals, we always use m or n. All rings are Noetherian.

Before stating the main theorem, we need to introduce some notions. Noetherian local rings (R,m)
always have finite Krull dimension– dimR É dimR/mm/m2 follows by a simple application of Nakayama
and Krull’s height theorem.

1.2. Definition (Regular sequence). A sequence of elements f1, f2, . . . , fr ∈m in a Noetherian local ring
(R,m) is called regular if f1 is a nonzerodivisor and fi is a nonzerodivisor on R/( f1, . . . , fi−1) for each
i = 2, . . . ,r.

This notion a priori depends on the order of the sequence. Intuitively, a regular sequence “cuts down”
the maximal ideal as much as possible at each step. If f ∈ R is any non-unit and nonzerodivisor, we have
dimR/( f ) É dimR −11. It follows that a regular sequence can have at most dimR terms.

Date: 25th November, 2022
Affiliation: BSc 2nd year, Chennai Mathematical Institute
1This is because minimal primes only have zerodivisors. If p1 ⊊ p2 ⊊ · · ·⊊ pn is a chain in R/( f ) then we can find p0 ∈ SpecR

such that p0 ⊊ p1 + ( f ) as p1 + ( f ) cannot be a minimal prime, f being a nonzerodivisor. In fact, this is an equality, see
Atiyah-Macdonald [1, Corollary 11.18].
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1.3. Definition (Depth). The length of a maximal regular sequence in a Noetherian local ring R is
called the depth of R. It is denoted depthR. For a general Noetherain ring R and prime ideal p, we write
depthp for depthRp.

Just like (co)dimension, depth can be thought of as a measure of how big a local ring or an ideal is.
Since depthR É dimR holds for all Noetherian local rings R, it is natural to investigate the equality case.

1.4. Definition (Cohen-Macaulay rings). A Noetherian local ring R is called Cohen-Macaulay if
depthR = dimR. In general, a ring A is called Cohen-Macaulay if Ap is a Cohen-Macaulay local ring for
each p ∈ Spec A.

For a finite-dimensional k-vectorspace V , we denote the free algebra k[φ1,φ2, . . . ,φn] as k[V ], where
(φ1, . . . ,φn) is a fixed dual basis for the dual space of V. It is clear that k[V ] doesn’t depend on the choice
of basis upto isomorphism. Let G be a group. A finite-dimensional G-representation V naturally induces
an action of G on k[V ] by identifying the unit degree graded piece of k[V ] with V.

1.5. Definition (Linearly reductive group). A group G is called linearly reductive2 if every finite-
dimensional G-representation V can be decomposed into irreducible subrepresentations.

We can now finally state the main theorem–

1.6. Theorem (Hochster-Roberts). — Let G be a linearly reductive group and V a finite-dimensional
G-representation, both defined over a field k of characteristic zero. Then k[V ]G is a Cohen-Macaulay ring.

The linearly reductive hypothesis on G is solely to ensure that I k[V ]∩k[V ]G = I holds for all k[V ]G -
ideals I (see Proposition 2.10). Any graded k-subalgebra S of k[V ] such that I k[V ]∩S = I holds for all
S-ideals I is also Cohen-Macaulay.

2 Background

2.1. Cohen-Macaulayness, generic freeness, graded Noether normalization. Checking Cohen-
Macaulayness in the graded case is much easier due to the following result–

2.2. Lemma (Cohen-Macaulayness criterion for graded rings). — Let R be a postively graded
Noetherian ring and m = R+ be the irrelevant ideal. Then R is Cohen-Macaulay if and only if Rm is
Cohen-Macaulay.

Proof. See Bruns-Herzog [2, Exercise 2.1.27 (c), Theorem 1.5.8 (b), Theorem 1.5.9]. □

2.3. Theorem (Generic freeness). — Let A be a Noetherian domain and B be a finitely generated
A-algebra. Then there exists a nonzero f ∈ A such that B f is a free A f -module.

Proof. See Matsumura [4, 22.A]. Also see https://en.wikipedia.org/wiki/Noether_normalizat
ion_lemma#Illustrative_application:_generic_freeness. □

The following lemma is true without the infiniteness constraint on k, but since our base field is of
characteristic 0, we assume k is infinite to simplify the proof.

2G is an algebraic group in the original paper, but we avoid this as the Hochster-Roberts theorem has nothing to do with
the scheme structure of G in characteristic zero.

https://en.wikipedia.org/wiki/Noether_normalization_lemma#Illustrative_application:_generic_freeness
https://en.wikipedia.org/wiki/Noether_normalization_lemma#Illustrative_application:_generic_freeness
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2.4. Lemma (Graded Noether normalization). — Let R be a finitely-generated positively-graded k-
algebra, where k is an infinite field. Assume that the degree zero graded piece of R is just k. There exist
homogeneous elements x1, x2, . . . , xn ∈ R such that

(i) R is a finite extension of k[x1, x2, . . . , xn].
(ii) n = dimR.
(iii) x1, x2, . . . , xn are algebraically independent over k.

Proof. We give a brief sketch. There exists d > 0 such that R(d) def= R0⊕Rd⊕R2d⊕·· · is generated by Rd over
k. See Stacks [5, Tag: 0EGH]. As R is finite over R(d) we replace R with R(d). Take some homogeneous
generators y1, y2, . . . , ym of Rd as a k-vectorspace. If yi are algebraically independent, there is nothing
to do. So suppose there is some nontrivial polynomial f ∈ k[X1, . . . , Xm] with f (y1, . . . , ym) = 0. We can
pick f to be homogeneous as yi are homogeneous. Due to infiniteness of k, there exist ai ∈ k such
that f (a1, . . . , am−1,1) ̸= 0. Then f (a1, . . . , am−1,1)−1 f (a1 ym+z1, a2 ym+z2, . . . , am−1 ym+zm−1, ym), where
zi = yi −ai ym , is monic in ym . Note that zi are homogeneous. Thus, R(d) is finite over k[z1, z2, . . . , zm−1]
and we can induct on the k-vectorspace dimension of the degree 1 graded piece. The fact that the size of
such a sequence of elements is dimR is a consequence of going-up theorem for integral extensions. □

2.5. Lemma. — Let B ,→ C be a finite type inclusion of domains. Then SpecC → SpecB maps closed
points to closed points.

Proof. By induction, wemay assumeC is singly generated over B. WriteC = B [X ]/p. Then SpecC → SpecB
factors through SpecB [X ]. Obviously, SpecC → SpecB [X ] maps closed points to closed points. So
we must show that SpecB [X ] → SpecB maps closed points to closed points. Indeed, suppose if
m ∈ MaxSpecB [X ] and m∩B = n. Then n[X ]+ (X ) is a proper ideal and it contains m. As m is max-
imal, this means that n[X ]+ (X ) =m. Hence, B [X ]/m= B [X ]/(n[X ]+ (X )) ∼= B/n. Thus, n is maximal in
B. □

2.6. Finite-generation of the invariant ring. We give a brief outline of the proof of finite-generation
of the invariant ring.

2.7. Definition (Reynolds operator). — Let S ⊆ R be rings. An S-module map ρ : R → S is called a
Reynolds operator corresponding to S ⊆ R if it fixes S pointwise.

2.8. Lemma. — Let G be a linearly reductive group acting linearly on a finite-dimensional k-vectorspace
V . Then there is a linear map V →V G which fixes V G pointwise.

Proof. This is clear because the linearly reductive hypothesis means that we can decompose V into
irreducible subrepresentations. One of the components would be the trivial subrepresentation V G . So,
we can decompose V as V G ⊕U where U is invariant under G . Now, the required map V →V G is just
the natural projection from V to V G . □

2.9. Lemma. — Let G be a linearly reductive group acting linearly on a free k-algebra A = k[X1, . . . , Xn].
Then there is a Reynolds operator corresponding to AG ⊆ A.

Proof. We provide a brief sketch. Decompose A into the graded pieces as A = k ⊕ A1 ⊕ A2 ⊕·· · . Then G
acts linearly on each of the graded pieces. So, corresponding to each Ai , there is a Reynolds operator
ρi : Ai → AG

i by Lemma 2.8. Now the required Reynolds operator is just idk ⊕ρ1 ⊕ρ2 ⊕·· · . □

2.10. Proposition. — If there is a Reynolds operator for S ⊆ R. Then
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(i) I R ∩S = I for each S-ideal I .
(ii) if R is Noetherian, then so is S.

Proof. All of these are pretty straightforward to show. Omitted. [2, Proposition 6.4.4] □.

It can be shown by a routine induction on the degree that positively graded Noetherian k-algebras
are generated by the (finitely many) generators of the irrelevant ideal. Concluding, RG is a finitely
generated k-algebra by Lemma 2.9 and Proposition 2.10 (ii).

3 The proof

3.1. Setup. Set R = k[V ] = k[X1, . . . , Xn], and S = RG . We know that S is a finitely generated (graded)
k-subalgebra of R. By graded Noether normalization (see Lemma 2.4), we can find homogeneous
f1, . . . , fs ∈ S such that S is a finite B-module, where B = k[ f1, . . . , fs] and s = dimS. By Lemma 2.2, it
suffices to show that f1, . . . , fs is a regular sequence in the localization of S at the irrelevant ideal, which
is equivalent to the following for each r = 1,2, . . . , s −1:

If gi ∈ S, 1 É i É r +1, and gr+1 fr+1 ∈ g1 f1 + g2 f2 +·· ·+ gr fr then gr+1 ∈ ( f1, . . . , fr )S.
In fact, we may assume that all the gi ’s are homogeneous because the ideal ( f1, . . . , fr )S is homo-
geneous. By Proposition 2.10 (i), it suffices to show that gr+1 ∈ ( f1, . . . , fr )R. Let us assume the
contrary that gr+1 ∉ ( f1, . . . , fr )R. This is same as saying there doesn’t exist a1, a2, . . . , ar ∈ R with
gr+1 = a1 f1+a2 f2+·· ·+ar fr . Because of homogeneity, wemay assume that either deg ai = deg gr+1−deg fi

or ai = 0 for each i = 1,2, . . . ,r. The nonexistence of ai ∈ R with gr+1 = a1 f1+a2 f2+·· ·+ar fr is equivalent
to unsolvability of a (finite) system of inhomogeneous linear equations, call it S, with coefficients in k
obtained by comparing coefficients in R.

3.2. Finite generation trick. Let r1, . . . ,rm ∈ S generate S as a B-module. Suppose A is a finitely
generated (as a Z-algebra) subring of k containing
(a) all coefficients of gi as a polynomial in X1, . . . , Xn , 1 É i É r +1,
(b) all the coefficients of ci j ∈ B , as polynomials in f1, . . . , fs , for some arbitrary representation

gi = ci 1r1 + ci 2r2 +·· ·+ci mrm , 1 É i É r +1.

(c) all the coefficients of di j k ∈ B , as polynomials in f1, . . . , fs , for some representation

ri r j = di j 1r1 +di j 2r2 +·· ·+di j mrm , 1 É i , j É m.

The upshot of the above construction is that we can now replace k by the ring A which has the property
that A/m is a finite field for each m ∈ MaxSpec A. Indeed, applying Noether normalization with respect
to the prime subfield of A/m we see that it is a finite field. To be precise, define R0 = A[X1, . . . , Xn],
B0 = A[ f1, . . . , fs], and S0 = B0[r1, . . . ,rm], then we have
(a) S0 ⊆ R0,
(b) S0 = B0r1 +·· ·+B0rm ,
(c) gr+1 ∈ S0,
(d) gr+1 fr+1 ∈ S0 f1 +·· ·+S0 fr .

So we can safely replace k with A in the theorem statement. Because of our assumption that S is
unsolvable, it is also unsolvable in Frac A for any such A ⊆ k. Write the system of equations as M x = b,
where M ∈ Matp×q (A), b ∈ A⊕p \ {0}. Let N = [M | b] be the augmented matrix of the system. Consider
the following claim:



THE COHEN-MACAULAY PROPERTY OF INVARIANT RINGS 5

3.3. Claim. — The system of equations M x = b has no solutions in x ∈ (Frac A)⊕q if and only if the A-span
of rows of N has a vector of the form (0,0, . . . ,0,b0) for some nonzero b0 ∈ A.

Proof. Suppose the A-span of rows of N has no vector of form (0,0, . . . ,0,b0) for any nonzero b0 ∈ A.
We must show that M x = b has a solution. If a set of rows of M are linearly dependent3 then we have
redundant equations. So we can delete all the redundant equations and assume that all rows of M are
linearly independent. Therefore, the linear map (Frac A)⊕q → (Frac A)⊕p determined by M is surjective,
and hence, a solution must exist. □

Thus, unsolvability of a system of inhomogeneous linear equations M x = b occurs due to the A-span
of rows of the augmented matrix having a vector of the form (0,0, . . . ,0,b0) for some nonzero b0 ∈ A.

We can now replace A by A[1/b0] to assume that S is not solvable modulo any m ∈ MaxSpec A.

3.4. Modding out by maximal ideals. We now want to mod out everything by a maximal ideal to
reduce the problem to the case of finite fields. Let m be a maximal ideal of A to be chosen later.

Define A = A/m, R = R/mR, B = B/mB , and S = S/mS. Let Xi ∈ R, fi ∈ B , and g i ∈ S denote the images
of Xi , fi , and gi , respectively. Note that R = A[X1, . . . , Xn] is a free algebra and B = A[ f1, . . . , fs]. Let the
characteristic of A be p > 0. We still have gr+1 ∉ ( f1, . . . , fr )R. But there is something more we want– we
would hope that f1, . . . , fr (mod mR) are algebraically independent over A/m. This can be ensured by
having B ⊆ R, i.e., the induced map B/mB →R/mR to be an injection4 5. By generic freeness (Theorem
2.3), there exists a nonzero f ∈ B such that R f is a free B f -module. The Jacobson radical of a free
algebra over a domain is 0. So, we can find a maximal ideal n ∈ MaxSpecB not containing f so that
m= n∩ A is a maximal ideal of A (see Lemma 2.5). We claim that B/mB →R/mR is an injection. This
follows from the following commutative diagram:

B/mB B f /mB f

R/mR R f /mR f

localization

Obviously, the horizontal localization maps are inclusions. The vertical map on the right hand side is
also an injection because R f is a free B f -module. Hence, B/mB →R/mR is also an inclusion.

3.5. Characteristic p: exploiting the Frobenious endomorphism. We mod out by the m obtained in
the previous subsection and write k for A/m. Because B/mB ,→R/mR, we can think of fi as elements of
R/mR. For brevity, we also drop the bars. So, for e.g., we just write fi for fi , B for B , etc.

The B-module S has a maximum-rank6 free submodule, say F. Then S/F is a torsion B-module. So
there exists a nonzero c ∈ B so that cS ⊆ F as S/F is finitely generated. We have

gr+1 fr+1 = g1 f1 + g2 f2 +·· ·+ gr fr .

3Linear (in)dependence is independent of whether we choose A or Frac A as our base ring because we can always clear
denominators.

4In general, this is not an injection. Take, for example, Z[2X ]/2Z[2X ]→Z[X ]/2Z[X ].
5For if P ∈ A[T1, . . . ,Ts ] is a polynomial, not all coefficients in m, such that P ( f1, . . . , fs ) ∈ mR (this is same as saying

fi (mod mR) are algebraicaly dependent over A/m) then P ( f1, . . . , fs ) ∈mR ∩B =mB , from the injectivity of B/mB →R/mR.
Therefore, the image of P ( f1, . . . , fs ) in B/mB is 0, which forces all coefficients of P to be in m as B/mB is a free A/m-algebra
generated by f1, . . . , fs . Thus, fi (mod mR) are indeed algebraically independent over A/m.

6The rank is defined as the cardinality of a maximal set of elements of S which are linearly independent over B . Here,
maximum-rank means that rankB F = rankB S. It can be shown that rankB S = dimFracB F ⊗B FracB.
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Set q = pN . Exponentiating by q and multiplying by c, we get
(cg q

r+1︸ ︷︷ ︸
∈F

) f q
r+1 = (cg q

1︸︷︷︸
∈F

) f q
1 + (cg q

2︸︷︷︸
∈F

) f q
2 +·· ·+ (cg q

r︸︷︷︸
∈F

) f q
r .

If f q
r+1 is a zerodivisor on F /( f q

1 , f q
2 , . . . , f q

r )F then it is also a zerodivisor on F /( f1, . . . , fr )F because
( f q

1 , . . . , f q
r ) ⊆ ( f1, . . . , fr ), which is clearly false because

F /( f1, . . . , fr )F ∼= (B/( f1, . . . , fr )B)⊕ℓ ∼= 7k[ fr+1, fr+2, . . . , fs]⊕ℓ,

where ℓ= rankB F. In particular, cg q
r+1 must be zeromodulo ( f q

1 , . . . , f q
r )F. So, there exists hi ∈ F, i = 1, . . . ,r ,

dependent on q, such that
cg q

r+1 = h1 f q
1 +h2 f q

2 +·· ·+hr f q
r .

Since the Frobenious endomorphism is an automorphism in the case of finite fields, every element of
k is a qth power. Denote M = {X e1

1 · · ·X en
n : 0 É ei < q for each i = 1, . . . ,n}. Therefore, every element

h of R can be written as h = ∑
m∈M hq

mm in a unique way. In other words, k[X1, . . . , Xn] is a free
k[X q

1 , . . . , X q
n ]-module. Let hi =∑

m∈M hq
i mm for each i . Thus,

cg q
r+1 =

r∑
i=1

hi f q
i =

r∑
i=1

∑
m∈M

hq
i m f q

i m = ∑
m∈M

(
r∑

i=1
hi m fi

)q

m = ∑
m∈M

kq
mm,

where km =∑r
i=1 hi m fi ∈ ( f1, . . . , fr )R. It is now crucial that c doesn’t depend on q. We choose q so large

that c =∑
m∈M cq

mm for cm ∈ k. Here we are using the fact that all elements of k are qth powers. Then∑
m∈M

(cm gr+1)q m = ∑
m∈M

kq
mm.

As c ̸= 0, there exists m ∈M with cm ̸= 0 so that
cm gr+1 = km =⇒ gr+1 = c−1

m km ∈ ( f1, . . . , fr )R.

Contradiction! □
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