THE COHEN-MACAULAY PROPERTY OF INVARIANT RINGS

AYAN NATH

CONTENTS

—_

Introduction
2. Background

2.1. Cohen-Macaulayness, generic freeness, graded Noether normalization
3. The proof

3.1. Setup
3.2. Finite generation trick
3.4. Modding out by maximal ideals

3.5. Characteristic p: exploiting the Frobenious endomorphism
References

DU U A B DN

1 Introduction

In this expository report, we discuss a short proof of the Hochster-Roberts theorem (see Theorem
1.6) given in Knop’s unpublished note [3] written in German. Section 1 introduces and defines some
algebraic notions just enough to understand the statement of Theorem 1.6, and Section 2 provides a
rapid review of the background needed for the proof. The reader may skip to Section 3 for the main
proof.

1.1. Notation. The letters A, B, C, R, and S always denote commutative unital rings and k denotes a
field. For maximal ideals, we always use m or n. All rings are Noetherian.

Before stating the main theorem, we need to introduce some notions. Noetherian local rings (R, m)
always have finite Krull dimension— dim R < dimp;, m/m? follows by a simple application of Nakayama
and Krull’s height theorem.

1.2. Definition (Regular sequence). A sequence of elements fi, f>,..., fr € m in a Noetherian local ring
(R,m) is called regular if f; is a nonzerodivisor and f; is a nonzerodivisor on R/(fi,..., fi—1) for each
i=2,...,r1.

This notion a priori depends on the order of the sequence. Intuitively, a regular sequence “cuts down”
the maximal ideal as much as possible at each step. If f € R is any non-unit and nonzerodivisor, we have
dimR/(f) <dimR - 1. It follows that a regular sequence can have at most dim R terms.
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LThis is because minimal primes only have zerodivisors. If p1 C p2 C --- C py, is a chain in R/(f) then we can find pg € Spec R
such that pg C p1 + (f) as p; + (f) cannot be a minimal prime, f being a nonzerodivisor. In fact, this is an equality, see
Atiyah-Macdonald [1, Corollary 11.18].
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1.3. Definition (Depth). The length of a maximal regular sequence in a Noetherian local ring R is
called the depth of R. It is denoted depth R. For a general Noetherain ring R and prime ideal p, we write
depthp for depth Ry,.

Just like (co)dimension, depth can be thought of as a measure of how big a local ring or an ideal is.
Since depth R < dim R holds for all Noetherian local rings R, it is natural to investigate the equality case.

1.4. Definition (Cohen-Macaulay rings). A Noetherian local ring R is called Cohen-Macaulay if
depthR = dimR. In general, a ring A is called Cohen-Macaulay if A, is a Cohen-Macaulay local ring for
each p € Spec A.

For a finite-dimensional k-vectorspace V, we denote the free algebra k[¢1, ¢o,..., ¢, as k[V], where
(¢1,...,¢n) is a fixed dual basis for the dual space of V. It is clear that k[V] doesn’t depend on the choice
of basis upto isomorphism. Let G be a group. A finite-dimensional G-representation V naturally induces
an action of G on k[V] by identifying the unit degree graded piece of k[V] with V.

1.5. Definition (Linearly reductive group). A group G is called linearly reductive® if every finite-
dimensional G-representation V can be decomposed into irreducible subrepresentations.

We can now finally state the main theorem-

1.6. Theorem (Hochster-Roberts). — Let G be a linearly reductive group and V a finite-dimensional
G-representation, both defined over a field k of characteristic zero. Then k[V1% is a Cohen-Macaulay ring.

The linearly reductive hypothesis on G is solely to ensure that Ik[V]n k[V]% = I holds for all k[V]°-
ideals I (see Proposition 2.10). Any graded k-subalgebra S of k[V] such that Ik[V]n S =TI holds for all
S-ideals I is also Cohen-Macaulay.

2 Background

2.1. Cohen-Macaulayness, generic freeness, graded Noether normalization. Checking Cohen-
Macaulayness in the graded case is much easier due to the following result—

2.2. Lemma (Cohen-Macaulayness criterion for graded rings). — Let R be a postively graded
Noetherian ring and m = R, be the irrelevant ideal. Then R is Cohen-Macaulay if and only if Ry is
Cohen-Macaulay.

Proof. See Bruns-Herzog [2, Exercise 2.1.27 (c), Theorem 1.5.8 (b), Theorem 1.5.9]. O
2.3. Theorem (Generic freeness). — Let A be a Noetherian domain and B be a finitely generated
A-algebra. Then there exists a nonzero f € A such that By is a free Ay-module.

Proof. See Matsumura [4, 22.A]. Also see https://en.wikipedia.org/wiki/Noether_normalizat
ion_lemma#Illustrative_application:_generic_freeness. U

The following lemma is true without the infiniteness constraint on k, but since our base field is of
characteristic 0, we assume k is infinite to simplify the proof.

2Gis an algebraic group in the original paper, but we avoid this as the Hochster-Roberts theorem has nothing to do with
the scheme structure of G in characteristic zero.
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2.4. Lemma (Graded Noether normalization). — Let R be a finitely-generated positively-graded k-
algebra, where k is an infinite field. Assume that the degree zero graded piece of R is just k. There exist
homogeneous elements x1,X2,...,X, € R such that

(1) R is a finite extension of k[x1,X2,...,Xp].
(ii) n=dimR.
@iii) x1,xz,...,Xx, are algebraically independent over k.

Proof. We give a brief sketch. There exists d > 0 such that R@ def Ry®R;®Ry;6--- is generated by R, over
k. See Stacks [5, Tag: OEGH]. As R is finite over R we replace R with R‘¥. Take some homogeneous
generators y1,¥s,..., ym Oof Ry as a k-vectorspace. If y; are algebraically independent, there is nothing
to do. So suppose there is some nontrivial polynomial f € k[X;,..., X;,] with f(y1,...,ym) =0. We can
pick f to be homogeneous as y; are homogeneous. Due to infiniteness of k, there exist a; € k such
that f(ai,...,am-1,1) #0. Then f(ay,...,am-1, )" fl@1ym+21, G2 Ym+22, ..., Am-1Ym+Zm-1, Ym), Where
Zi = Yi — @i ¥m, is monic in y,,. Note that z; are homogeneous. Thus, R is finite over k[z1, 2o, ..., Zm-1]
and we can induct on the k-vectorspace dimension of the degree 1 graded piece. The fact that the size of
such a sequence of elements is dim R is a consequence of going-up theorem for integral extensions. [

2.5. Lemma. — Let B < C be a finite type inclusion of domains. Then SpecC — Spec B maps closed
points to closed points.

Proof. By induction, we may assume C is singly generated over B. Write C = B[X]/p. Then Spec C — Spec B
factors through Spec B[X]. Obviously, SpecC — Spec B[X] maps closed points to closed points. So
we must show that Spec B[X] — Spec B maps closed points to closed points. Indeed, suppose if
m € MaxSpec B[X] and mn B = n. Then n[X] + (X) is a proper ideal and it contains m. As m is max-
imal, this means that n[X] + (X) = m. Hence, B[X]/m = B[X]/(n[X] + (X)) £ B/n. Thus, n is maximal in
B. O

2.6. Finite-generation of the invariant ring. We give a brief outline of the proof of finite-generation
of the invariant ring.

2.7. Definition (Reynolds operator). — Let S< R be rings. An S-module map p: R — S is called a
Reynolds operator corresponding to S € R if it fixes S pointwise.

2.8. Lemma. — Let G be a linearly reductive group acting linearly on a finite-dimensional k-vectorspace
V. Then there is a linear map V — VY which fixes V© pointwise.

Proof. This is clear because the linearly reductive hypothesis means that we can decompose V into
irreducible subrepresentations. One of the components would be the trivial subrepresentation V. So,
we can decompose V as VY@ U where U is invariant under G. Now, the required map V — V¥ is just
the natural projection from V to V. O

2.9. Lemma. — Let G be a linearly reductive group acting linearly on a free k-algebra A= k[Xy,..., Xyl
Then there is a Reynolds operator corresponding to A% € A.

Proof. We provide a brief sketch. Decompose A into the graded piecesas A=k® Ay ® A, ®---. Then G
acts linearly on each of the graded pieces. So, corresponding to each A;, there is a Reynolds operator
pit Ai — AZ.G by Lemma 2.8. Now the required Reynolds operator is just idx ®p; @ p2 @ ---. U

2.10. Proposition. — If there is a Reynolds operator for S < R. Then
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(i) IRNS=1 for each S-ideal I.
(i) if R is Noetherian, then so is S.

Proof. All of these are pretty straightforward to show. Omitted. [2, Proposition 6.4.4] L.

It can be shown by a routine induction on the degree that positively graded Noetherian k-algebras
are generated by the (finitely many) generators of the irrelevant ideal. Concluding, R is a finitely
generated k-algebra by Lemma 2.9 and Proposition 2.10 (ii).

3 The proof

3.1. Setup. Set R=k[V]=k[Xi,...,X,], and S = R. We know that S is a finitely generated (graded)
k-subalgebra of R. By graded Noether normalization (see Lemma 2.4), we can find homogeneous
fi,..., fs € S such that S is a finite B-module, where B = k[fj, ..., fs] and s = dimS. By Lemma 2.2, it
suffices to show that fi,..., f; is a regular sequence in the localization of S at the irrelevant ideal, which
is equivalent to the following for each r=1,2,...,s—1:

IfgieS1<is<r+l,and gr1frrn€e@fi+&fo+ - +gfrthen g-1€(fi,..., f7)S.

In fact, we may assume that all the g;’s are homogeneous because the ideal (fi,..., f;)S is homo-
geneous. By Proposition 2.10 (i), it suffices to show that g,.; € (f1,..., fr)R. Let us assume the
contrary that g4+ ¢ (f1,..., fy)R. This is same as saying there doesn’t exist a;,ay,...,a, € R with
gr+1 = m fi+as fo+---+a, f,. Because of homogeneity, we may assume that either dega; = deg g,.1—deg f;
or a; =0 foreach i =1,2,...,r. The nonexistence of a; € R with g,+1 = a1 fi+az fo +---+ a, f, is equivalent
to unsolvability of a (finite) system of inhomogeneous linear equations, call it S, with coefficients in k
obtained by comparing coefficients in R.

3.2. Finite generation trick. Let ry,...,7;, € S generate S as a B-module. Suppose A is a finitely
generated (as a Z-algebra) subring of k containing

(a) all coefficients of g; as a polynomial in Xi,...,X,, 1<i<r+1,
(b) all the coefficients of ¢; j € B, as polynomials in fi,..., f5, for some arbitrary representation

gi=cir+cippra+-+Cimrm, 1<is<r+1.
() all the coefficients of d; ;. € B, as polynomials in fi,..., fs, for some representation

rirj=diprntdijpro+-+dijmrm, 1<i,j<m.

The upshot of the above construction is that we can now replace k by the ring A which has the property
that A/m is a finite field for each m € MaxSpec A. Indeed, applying Noether normalization with respect
to the prime subfield of A/m we see that it is a finite field. To be precise, define Ry = A[X},..., X;],
Bo = Alf1,..., fs], and So = Bylr1,..., '], then we have

(@ So< Ry,

(b) So=Bory+---+Borm,

©) gr+1€ So,

(d gr+1fre1€Sofi+-+Sofr-

So we can safely replace k with A in the theorem statement. Because of our assumption that S is
unsolvable, it is also unsolvable in Frac A for any such A < k. Write the system of equations as Mx = b,
where M € Mat,4(A), b€ A®P\{0}. Let N =[M | b] be the augmented matrix of the system. Consider
the following claim:
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3.3. Claim. — The system of equations Mx = b has no solutions in x € (Frac A)®7 if and only if the A-span
of rows of N has a vector of the form (0,0,...,0, by) for some nonzero by € A.

Proof. Suppose the A-span of rows of N has no vector of form (0,0,...,0, bg) for any nonzero by € A.
We must show that Mx = b has a solution. If a set of rows of M are linearly dependent® then we have
redundant equations. So we can delete all the redundant equations and assume that all rows of M are
linearly independent. Therefore, the linear map (Frac A)®7 — (Frac A)®? determined by M is surjective,
and hence, a solution must exist. O

Thus, unsolvability of a system of inhomogeneous linear equations Mx = b occurs due to the A-span
of rows of the augmented matrix having a vector of the form (0,0,...,0, by) for some nonzero by € A.
We can now replace A by A[1/by] to assume that S is not solvable modulo any m € MaxSpec A.

3.4. Modding out by maximal ideals. We now want to mod out everything by a maximal ideal to
reduce the problem to the case of finite fields. Let m be a maximal ideal of A to be chosen later.

Define A= A/m, R= R/mR, B=B/mB, and S=S/mS.Let X;€R, fie B,and g gi€ S denote the images
of X;, f;, and g;, respect1ve1y Note that R = A[Xj,..., X,] is a free algebra and B=A[ fl, fs ]. Let the
characteristic of A be p > 0. We still have g, ¢ (fi,..., f-)R. But there is something more we want— we
would hope that fi,..., f; (mod mR) are algebraically independent over A/m. This can be ensured by
having B< R, i.e., the induced map B/mB — R/mR to be an 11‘1J€Ct101‘14 >, By generic freeness (Theorem
2.3), there exists a nonzero f € B such that Rrisa free By-module. The Jacobson radical of a free
algebra over a domain is 0. So, we can find a maximal ideal n € MaxSpec B not containing f so that
m=nn A is a maximal ideal of A (see Lemma 2.5). We claim that B/mB — R/mR is an injection. This
follows from the following commutative diagram:

localization

B/mB <=0 Be/mBy

RIMR 5 Ry/mRy

Obviously, the horizontal localization maps are inclusions. The vertical map on the right hand side is
also an injection because Ry is a free By-module. Hence, B/mB — R/mR is also an inclusion.

3.5. Characteristic p: exploiting the Frobenious endomorphism. We mod out by the m obtained in
the previous subsection and write k for A/m. Because B/mB < R/mR, we can think of f; as elements of
R/mR. For brevity, we also drop the bars. So, for e.g., we just write f; for f;, B for B, etc.

The B-module $ has a maximum-rank® free submodule, say F. Then S/F is a torsion B-module. So
there exists a nonzero c € B so that ¢SS F as S/F is finitely generated. We have

Srvifri=§1h+&f++gfr

3Linear (in)dependence is independent of whether we choose A or Frac A as our base ring because we can always clear
denominators.

4In general, this is not an injection. Take, for example, Z[2X]/2Z[2X] — Z[X]/2Z[X].

SFor if P € A[Ty,..., Ts] is a polynomial, not all coefficients in m, such that P(f,..., fs) € mR (this is same as saying
fi (mod mR) are algebraicaly dependent over A/m) then P(fj,..., fs) € mRN B =mB, from the injectivity of B/mB — R/mR.
Therefore, the image of P(f,..., fs) in B/mB is 0, which forces all coefficients of P to be in m as B/mB is a free A/m-algebra
generated by f1,..., fs. Thus, f; (mod mR) are indeed algebraically independent over A/m.

OThe rank is defined as the cardinality of a maximal set of elements of S which are linearly independent over B. Here,
maximum-rank means that rankg F = rankg S. It can be shown that rankp S = dimp,c g F ® g Frac B.
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Set g = pV. Exponentiating by g and multiplying by c, we get

(Cgr+1)fr+l (Cgl ) +(cg2)f2 ek (egD It
——
EF eF EF (3

If fil is a zerodivisor on F/(flq,fzq,...,frq)F then it is also a zerodivisor on F/(fi,..., f;)F because
(flq,...,f,q) < (f1,..., fr), which is clearly false because

F/(flyrfr)FE (B/(fl)---er)B)e;[ E7k[fr+l;fr+2;---;fs]$[,

where ¢ = rankp F. In particular, cgf/Jrl must be zero modulo (flq, e, [)E So, thereexists h; € F, i =1,...,1,
dependent on ¢, such that

cglyy = mf' + o f)l -+ e f.
Since the Frobenious endomorphism is an automorphism in the case of finite fields, every element of
k is a gth power. Denote /4 = {X;'---X;": 0 <e; < g for each i = 1,..., n}. Therefore, every element
h of R can be written as h = ¥,,,c. hj,m in a unique way. In other words, k[Xj,...,X,] is a free
k(X{,...,X;1-module. Let h; =¥y« b m for each i. Thus,

, q
ctly =L ns? =¥ T usim= & (Shas] m= ¥ ki

i=1me# me# \i=1 me
where ky, =Y;_, himfi € (f1,..., f)R. It is now crucial that ¢ doesn’t depend on q. We choose q so large
that c =Y e u cfnm for c;, € k. Here we are using the fact that all elements of k are gth powers. Then
Z (Cmgr+1)qm = Z kfnm
me mel
As ¢ #0, there exists m € .4 with ¢, # 0 so that

Cm8r+1 = km = 8r+1 = C,_nlkm € (fl,---yfr)R-
Contradiction! a
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