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Abstract. We record a proof of the equivalence between the étale site of a perfectoid space and of its tilt.

1. Main theorem

Fix a perfectoid field K with pseudouniformizer π so that t := π♭ is a pseudouniformizer for K ♭. All
almost mathematics is performed with respect to K ◦◦ as usual.

Theorem 1.1 (Almost purity). Let R be a perfectoid K -algebra. Then inverting π gives an equivalence of
categories R◦

afét ≃ Rfét.

Note that apriori it is not clear if (almost) finite étale algebras over an perfectoid (almost) algebra is
perfectoid.

Lemma 1.2 (Perfectoidness passes through finite étale maps).
(a) Let K be of characteristic p. Let R be a perfectoid K -algebra. Let S be a finite étale R-algebra. Then S is

uniquely K -perfectoid.
(b) Let R be a perfectoid almost K ◦-algebra. Let S be an almost finite étale R-algebra. Then S is uniquely

almost K ◦-perfectoid.

Proof.
(a) Let R → S be finite étale. Let S0 be the integral closure of R◦ in S. Topologize S using the pair (S0,π).

Since Sa
0 = S◦a , it follows that S◦ is bounded. Observe that this topology is the same as the one

endowed by viewing S as a locally free R-module. Therefore, S◦ is π-adically complete. We need
to verify that S◦ is semiperfect. But this is trivial because S is perfect. Indeed, perfectness passes
through finite étale maps– see [Stacks, Tag 0F6W].

(b) Analogous. See [Bha, Page 49]. □

By Lemma 1.2 and from the main theorem of tilting correspondence of perfectoid algebras, “inverting
π” in the context of Theorem 1.1 factors through a subcategory of the R-comma category of PerfK . This
immediately implies that it is fully faithful. The hard part is to prove essential surjectivity, which is the
object of Section 3.

Corollary 1.3 (Tilting invariance of étale site). Let R be a perfectoid K -algebra. Then tilting and untilting
induces the following chain of equivalences

R♭
fét ≃ R♭◦

afét ≃ (R♭◦/t )afét ≃ (R◦/π)afét ≃ R◦
afét ≃ Rfét.

Proof. Almost purity (Theorem 1.1) for characteristic p perfectoid algebras, which will be proven in
Section 2, is going to give us the first equivalence. The functor in the second equivalence is “mod t
reduction”. By Lemma 1.2, the data of an object of R♭◦

afét is equivalent to the data of an inverse system of
almost finite étale R♭◦/t n-algebras indexed by n. An almost analog of topological invariance of étale site
then gives us that the second functor is an equivalence. The fourth functor is an equivalence due to the
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same reason. The third functor is identity. The last functor A 7→ A∗[ 1
π ] is an equivalence by Theorem

1.1. □

Proposition 1.4 (Almost purity for perfectoid fields). Theorem 1.1 is true for R = K .

Proof. See [Sch12, Page 283]. □

2. Almost purity in characteristic p

The goal of this section is to prove Theorem 1.1 when K has characteristic p. We will show that if R is a
perfectoid K -algebra and S is finite étale over R, which has to be uniquely perfectoid by Lemma 1.2, then
S◦ is almost finite étale over R◦. It is harmless to assume SpecR is connected so that SpecS → SpecR
is a finite étale cover. We first handle the Galois case, that is, assume that SpecS → SpecR is a finite
étale Galois cover. By how the perfectoid structure is endowed on S, we know that S0 ,→ S◦ is an almost
isomorphism, where S0 is the integral closure of R◦ in S. Therefore, it suffices to show that S0 is almost
finite étale over R. From now on, replace S◦ with S0 (so S◦ is not the subring of all powerbounded
elements anymore; this is purely a cosmetic change of notation). Denote η : R◦ → S◦. Since η[ 1

t ] is finite
étale, there is a diagonal idempotent e ∈ S ⊗R S such that t ne ∈ S◦⊗R◦ S◦ for some n. By taking pth roots,
we get t c e ∈ S◦⊗R◦ S◦ for arbitrarily small c > 0. This implies that e is an almost element which works as
a diagonal idempotent in the almost category. Hence, η is almost unramified. Fix some ε ∈ K ◦◦. Write
εe =∑n

i=1 ai ⊗bi ∈ S◦⊗R◦ S◦. Consider
f : S◦ →R◦n , s 7→ (TrS/R (sb1), . . . ,TrS/R (sbn)),

g : R◦n → S◦, (r1, . . . ,rn) 7→
n∑

i=1
ai ri .

To say that f is well-defined, we need to verify TrS/R (S◦) ⊂ R◦. This is clear because the characteristic
polynomial of the multiplication by α ∈ S◦ map is equal to

∏
σ∈Gal(S/R)(X −σ(α)) and hence TrS/R (α) =∑

σ∈Gal(S/R)σ(α), which is clearly an element of R◦. Then one verifies that g ◦ f is given by multplication
by ε. To summarise, the multiplication by t 1/pn map on S◦ factors as a direct summand of R◦rn for some
rn for each n. One then deduces that the relevant Ext-groups are almost vanishing and hence S◦ is almost
projective. In fact, we claim that R◦ → S◦ is an almost finite étale cover, i.e., it is almost faithfully flat.
We prove something stronger– R◦ → S◦ is almost split. It is enough to show that K ◦◦R◦ ⊂ TrS/R S◦. For
if TrS/R (s) = t 1/pn say, then we can consider S◦ → R◦ given by x 7→ TrS/R (sx) which when restricted to
R◦ acts as multiplication by t 1/pn

. Since R → S is finite étale, it follows that TrS/R (S) = R. This assertion
can be checked after a faithfully flat base change following which it is immediate. So pick some f ∈ S◦
so that TrS/R ( f ) = t c for some c Ê 0. It is easily verified that the trace map commutes with Frobenius.
Therefore, TrS/R ( f 1/pn

) = t c/pn for n Ê 0, which proves the desired inclusion.

For the general case, choose a finite étale cover SpecL → SpecS so that SpecL → SpecR and SpecL →
SpecS are finite Galois. Such an L exists by the theory of étale fundamental groups. Note that L is also
perfectoid. From our previous work, we know that S◦ → L◦ and R◦ → L◦ are almost finite étale and
almost faithfully flat. The assertion that R◦ → S◦ is almost finite étale can be checked after base changing
via R◦ → L◦ by almost faithfully flat descent. Indeed, the formalism of flat descent carries over to the
almost category by virtue of the adjoint A 7→ A!!, which preserves faithful flatness. Therefore, it suffices
to show that L◦ → S◦⊗R◦ L◦ is almost finite étale. By yoga of perfectness, one can show that S◦⊗̂R◦L◦ is
almost isomorphic to (S ⊗R L)◦. However, S ⊗R L ≃ S ⊗R S ⊗S L ≃ (S ⊗R S)⊗S L, which is isomorphic to an
algebra of the form L×L×·· ·×L since R → S is finite étale. We conclude that L◦ → S◦⊗R◦ L◦ is almost
finite étale after t -adic completion. In particular, this implies that L◦ → S◦⊗R◦ L◦ is almost finite étale
mod t . This completes the proof because L◦

afét ≃ (L◦/t )afét by an almost analog of topological invariance
of étale site.
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3. Almost purity in characteristic 0

Definition 3.1. (1) A map (A, A+)→ (B ,B+) of affinoid Tate rings is finite étale if A →B is finite
étale and B+ is the integral closure of A+ in B.

(2) A map f : X → Y of adic spaces is finite étale if there exists an open affinoid cover {Vi } of Y
such that Ui = f −1(Vi ) is affinoid, and (OY (Vi ),O+

Y (Vi ))→ (OX (Ui ),O+
X (Ui )) is finite étale.

(3) A map (A, A+) → (B ,B+) of affinoid K -algebras is strongly finite étale if it is finite étale and
A+ →B+ is almost finite étale.

(4) Amap f : X → Y of (perfectoid) adic spaces is strongly finite étale if there exists an open affinoid
(perfectoid) cover {Vi } of Y such thatUi = f −1(Vi ) is affinoid (perfectoid), and (OY (Vi ),O+

Y (Vi ))→
(OX (Ui ),O+

X (Ui )) is strongly finite étale.

Remark 3.2. It is not clear apriori if a (strongly) finite étale map of adic spaces which are perfectoid is
a (strongly) finite étale map of perfectoid spaces.

For essential surjectivity, it suffices to show that if (A, A+)→ (B ,B+) is a finite étale map of affinoid
K -algebras with A perfectoid then B is also perfectoid and A+ →B+ is almost finite étale. Indeed, we
may just take A+ = A◦ and B+ = B◦ to derive Theorem 1.1.

Lemma 3.3. Strong finite étaleness of perfectoid spaces is preserved under perfectoid base-change.

Proof. Clear from the construction of tensor products in the category of perfectoid K -algebras. □

Proposition 3.4 ([GR03, Proposition 5.4.53]). Let A be a flat K ◦-algebra that is Henselian along (π) and
Â be its completion. Then A[ 1

π ]fét ≃ Â[ 1
π ]fét.

Proposition 3.5. The natural forgetful functor gives an equivalence (A, A+)fét ≃ Afét.

Proof. Clear. □

Corollary 3.6 (Étale site commutes with colimit for complete uniform affinoid K -algebras). Let (Ai , A+
i )

be a filtered system of complete uniform affinoid K -algebras, and (A, A+) be their colimit in the category of
complete uniform affinoid K -algebras. Then any finite étale A-algebra comes as the base-change of some
finite étale Ai -algebra. In other words, 2-colim(Ai )fét ≃ Afét.

Proof. Let us recall how the colimit is constructed. We set A+ to be the π-adic completion of the ring-
theoretic colimit B+ := colim A+

i , set A := A+[ 1
π ] and make (A+,π) a ring of definition. Therefore, by

Proposition 3.4, we have Afét ≃ B+[ 1
π ]fét = (colim Ai )fét. It is then a routine exercise to show that étale

site commutes with colimit for ordinary rings. □

Proposition 3.7 (Strongly finite étale maps form a stack). Let f : X → Y be a strongly finite étale map of
perfectoid spaces. Let V ,→ Y be an affinoid perfectoid open. Then its preimage U is also affinoid perfectoid
and the map

(OY (V ),O+
Y (V ))→ (OX (U ),O+

X (U ))

is strongly finite étale.

Proof. Routine “Noetherian approximation” method to reduce to the rigid-analytic setting. See [Sch12,
Proposition 7.6]. □

Proof of Theorem 1.1. We must show that the fully faithfuly functor R+a
afét →Rfét is essentially surjective.

Let S be a finite étale R-algebra. We must show that S comes from an almost finite étale R+a-algebra.
Thanks to Proposition 3.7, we may pass to adic spaces and instead work locally on X := Spa(R,R+). Fix
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x ∈ X . We want to solve the problem for some neighborhood of x. By formalism of colimits (Corollary
3.6), we expect that we’d be done if we show that there is a strongly finite étale map of the form
Spa(S⊗̂R�κ(x),−) → Spa(�κ(x), �κ(x)+). Indeed, recall that colimx∈U (OX (U ),O+

X (U )) ≃ (�κ(x), �κ(x)+). By
almost purity for perfectoid fields (Proposition 1.4), we know that there exist (a unique) S+

x making
Spa(S⊗̂R�κ(x),S+

x )→ Spa(�κ(x), �κ(x)+) strongly finite étale. This requires some explanation. Indeed, almost
purity for perfectoid fields supplies us an almost finite étale �κ(x)+a-algebra, say S+a

x , which we know is
almost perfectoid by Lemma 1.2. Now set S+

x to be the integral closure of �κ(x)+ in S⊗̂R�κ(x) and make
(S⊗̂R�κ(x),S+

x ) into an affinoid perfectoid �κ(x)-algebra by topologizing in the natural manner. Since (S+a
x )∗

is also integrally closed, it follows that �κ(x)+ is a subring of (S+a
x )∗ both containing �κ(x)◦◦(S⊗̂R�κ(x))◦ and

contained in (S⊗̂R�κ(x))◦. Therefore, S+
x is almost isomorphic to (S+a

x )∗, which shows that S+
x is almost

finite étale over �κ(x)+. To ‘spread’ S+
x to an almost finite étale algebra over a neighborhood we’d like to

have the following equivalence
2-colimO+

X (U )afét ≃ �κ(x)+afét.

By the already proven equivalences in Corollary 1.3, the validity of the above equivalence is compatible
with tilting. In characteristic p, the above equivalence holds by Corollary 3.6 and almost purity in
characteristic p (Section 2). Therefore, there exists an open affinoid perfectoid neighborhood U of
x so that there exists some S+a

U which is almost finite étale over O+
X (U )a . Set SU = (S+a

U )∗[ 1
π ] and S+

U
as the integral closure of O+

X (U ) in SU . Topologize in such a way that (SU ,S+
U ) is a affinoid perfectoid

(OX (U ),O+
X (U ))-algebra. By similar reasoning as earlier, we deduce that O+

X (U ) → S+
U is almost finite

étale. Thanks to the following 2-commuting square, we know that SU agrees with S⊗̂ROX (U ):

2-colimO+
X (U )afét

�κ(x)+afét

2-colimOX (U )fét �κ(x)fét

≃

(−)∗[ 1
π

] (−)∗[ 1
π

]

≃

The left vertical arrow is an equivalence because all the other arrows are. From now on, identify SU

with S⊗̂ROX (U ). To summarize, we have an open affinoid perfectoid cover X =∪iUi with strongly finite
étale maps Spa(SUi ,S+

Ui
)→Ui where SUi = S⊗̂ROX (Ui ). Of course, S⊗̂ROX (U ) glue to a sheaf S̃. Indeed,

since S is R-flat and completion is exact, the Čech complex of OX remains exact after applying S⊗̂R (−).
This also means that we can functorially recover S from S̃ as H0(X , S̃) = S. Since S+

Ui
is computed from

taking the integral closure of O+
X (Ui ) in SUi , it follows from Lemma 3.3 that S+

Ui
glue to give a sheaf S̃+.

Therefore, Spa(SUi ,S+
Ui

) glue to give a perfectoid space Y which is strongly finite étale over X . This also
means by Proposition 3.7 that S̃+ is given on rational subsets U as the integral closure of O+

X (U ) in S̃(U )
and that Y is affinoid perfectoid with OY (Y ) = H0(X , S̃) = S, O+

Y (Y ) the integral closure of R+ in S, and
O+

Y (Y ) almost finite étale over R+. □
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