
Perfectoid Rings and Tilting

De�nition 0.1 (Perfectoid Field). A perfectoid �eld is a topological �eld K complete with respect to a
nonarchimedean valuation | · | such that:

(1) The value group |K∗| is not discrete.

(2) The Frobenius x 7→ xp on OK/p = K◦/p is surjective.

We call an element ϖ ∈ K∗ with |p| ≤ |ϖ| < 1 a pseudo-uniformizer.

Example.

Any perfect nonarchimedean �eld K is perfectoid. In particular, ̂Fp((t))[t1/p
∞ ] = Fp((t

1/p∞
)). In fact, any

characteristic p perfectoid ring is perfect.

̂Qp(p1/p
∞) = Qp((p

1/p∞
)) is perfectoid. Indeed, it is Tate ring since Zp[[p

1/p∞
]] is a ring of de�nition and p1/p

is a topologically nilpotent unit, moreover (p1/p)p | p. It is complete by de�nition and uniform since the ring of
power bounded elements Zp((p

1/p∞
)) is a ring of de�nition. We have already constructed a pseudo-uniformizer

with ϖp | p, so it remains to check that the Frobenius map Zp[[p
1/p∞

]]/p1/p → Zp[[p
1/p∞

]]/p is an isomorphism.
But this is just the map Fp[t

1/t∞ ]/t1/p → Fp[t
1/p∞

]/t which is an isomorphism by perfectness of Fp[t
1/p∞

].

̂Qp(µp∞) = Qp((µp∞)) is perfectoid. The fact that it is a complete uniform Tate ring is the same argument
as above using the fact that the ring of integers in Qp(ζpn) is Zp[ζpn ]. 1 − ζp is a pseudo-uniformizer with
(1− ζp)

p | p. Finally, it su�ces to show surjectivity of Frobenius on Zp[[µp∞ ]]/p. But we have

Zp[[µp∞ ]]/p = Zp[µp∞ ]/p = (colimZp[X]/(Xpn

− 1))/p = colimFp[X]/(X − 1)p
n

= Fp[t
1/p∞

]/t

and surjectivity of Frobenius on the latter is clear. ⋄

Proposition 0.2 (Basic Properties of Perfectoid Fields). Let K be a perfectoid �eld. Then

1. The value group |K∗| is p-divisible.

2. There exists a pseudo-uniformizer ϖ with a compatible system of p-th power roots. Moreover,
K◦◦ = (ϖ1/p∞

) is the maximal ideal of K◦. In particular, (K◦◦)2 = K◦◦ and K◦◦ is a �at K◦-
module. Moreover, K◦ has Krull dimension 1.

Proof. For (1), suppose �rst that x ∈ K◦ with |p| < |x| ≤ 1. By perfectoidness, we can �nd y, z ∈ K◦ such
that yp = x + pz. Since |x| > |p| ≥ |pz|, it follows that |y|p = |x|. Thus |x| is divisible by p. In general,
since ϖp | p, we may write p = ϖpx with x ∈ K◦. In other words, |p| = |ϖ|p|x| < |x| ≤ 1 using that ϖ is
topologically nilpotent so that |ϖ| < 1. Thus |x| = |y|p, so that |p| is also p divisible. Finally, if x ∈ K∗,
then replacing x with pn|x|±1 for n ∈ Z, we may assume that |p| ≤ |x| ≤ 1. But then the result is clear for
|x|.

For (2), we will prove everything under the assumption that such a ϖ exists. This fact will be deduced
later for a much larger class of rings. Since K◦ is a rank 1 valuation ring, i.e. its value group embeds into
R≥0, its Krull dimension is 1. Moreover, since ϖ is nonzero, the ring K◦/ϖ is a local ring of dimension
0, so its maximal ideal is its nilradical rad(K◦/ϖ). Evidently, (ϖ1/p∞

) ⊂ rad(K◦/ϖ) and moreover, the
quotient K◦/(ϖ1/p∞

) is perfect, hence reduced. Thus (ϖ1/p∞
) = rad(K◦/ϖ) and the maximal ideal of

K◦ is the pre-image of this ideal, which is also (ϖ1/p∞
). Finally, since (K◦◦)p = (ϖ1/p∞

) = K◦◦, we �nd
that (K◦◦)2 = K◦◦. For the �atness claim, we note that any torsion-free module over a valuation ring is
�at.
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We will now generalize the situation beyond perfectoid �elds since many of the basic properties of tilting hold in
much greater generality. For this we need some de�nitions coming from p-adic geometry, namely Huber rings.

De�nition 0.3 (Huber and Tate Rings). A topological ring A is a Huber ring if there is an open subring A0

and a �nitely generated ideal I ⊂ A0 such that the subspace topology on A0 ⊂ A coincides with the I-adic
topology. The subring A0 is called the ring of de�nition and the ideal I the ideal of de�nition.

Let A be a Huber ring. A subset S ⊂ A is called bounded if for any open subset U ⊂ A there exists
an open subset V ⊂ A such that

⋃
s∈S sV ⊂ U . An element f ∈ A is called power-bounded if the set

{fn : n ∈ N} ⊂ A is bounded. We denote the set of all power-bounded elements by A◦. An element f ∈ A
is called topologically nilpotent if fn → 0 as n → ∞, that is to say for any open neighborhood U of 0, there
exists an N ∈ N such that {fn : n ≥ N} ⊂ U . We denote the set of topologically nilpotent elements by
A◦◦.

A Huber ring A is called Tate if there exists a topologically nilpotent unit ϖ ∈ A, i.e. an element ϖ of
A∗ ∩A◦◦. Any such topologically nilpotent unit is called a pseudo-uniformizer.

A Huber ring A is called uniform if the set A◦ ⊂ A of power bounded elements is itself bounded.

Remark. We will primarily be interested in complete uniform Tate rings. For these, the condition can be
described more cleanly. Since any ideal of de�nition is automatically a subring of A◦ and any open bounded
subring of A◦ is automatically a ring of de�nition, the condition that A be uniform is equivalent to asking that
A◦ be a ring of de�nition. Moreover, the condition that A be Tate is equivalent to A◦ having theϖ-adic topology
with A = A◦[1/ϖ]. In other words, a topological ring A is a complete uniform Tate ring if A = A◦[1/ϖ] and such
that A◦ is complete with respect to the ϖ-adic topology. In this case, we may also de�ne a submultiplicative
norm |x| = inf{2−n : x ∈ ϖnA◦, n ∈ Z} which induces the topology on A. This makes A a Banach ring. Using
this norm we may also rephrase the condition that A is a complete uniform Tate ring one �nal time as follows.
A ring A is a complete uniform Tate ring if A = B[1/ϖ] for a ϖ-complete ϖ-torsion-free totally integrally closed
ring B containing ϖ.

Here the total integral closure of R → S is the set of f ∈ S such that {fn : n ∈ N} is contained in a �nitely
generated R-submodule of S. This agrees with the usual integral closure if R is Noetherian, but not in general.
A subring R ⊂ S is totally integrally closed if R equals its total integral closure in S. It is not necessarily true
that the total integral closure of R in S is totally integrally closed.

De�nition 0.4 (Perfectoid Ring). A perfectoid ring is a complete uniform Tate ring A with a pseudo-
uniformizerϖ such thatϖp | p in A◦ and the Frobenius map A◦/ϖ → A◦/ϖp is an isomorphism. We denote
the category of perfectoid rings by Perf. A perfectoid �eld is a perfectoid ring which is a nonarchimedean
�eld.

Example. 1. Let A be a perfectoid ring. Then ̂A[T 1/p∞ ] = A⟨T 1/p∞⟩ is perfectoid. It is obviously still a
complete uniform Tate ring and the same pseudo-uniformizer ϖ works. It su�ces to show that Frobenius
is surjective mod p, but this is clear.

2. Let R = Zp[[µp∞ , T 1/p∞
]]⟨(p/T )1/p∞⟩[1/T ]. Then R is perfectoid. It is complete and uniform Tate ring

by de�nition and we may take the pseudo-uniformizer to be ϖ = T 1/p since then ϖp = T | p. Finally,
the same computation as with the cyclotomic case shows that Frobenius is surjective. This example is
interesting since it does not contain a �eld.

⋄
Remark. At this point it is good to make a remark that the uniformity of perfectoid rings implies in particular
that any perfectoid ring A is reduced. Indeed, if x ∈ A is nilpotent, then Ax ⊂ A◦ and A◦ is not bounded
since A = A◦[1/ϖ] is not bounded. This means in particular that notions such as in�nitesimal thickenings
or di�erentials are not useful concepts in the perfectoid world. For example, although one may de�ne Kähler
di�erentials, they will generally not work well. Let us give an explicit example:

Exercise. Let K be a perfectoid �eld of characteristic 0. Show that Ω1
K◦/Zp

is nonzero but that the p-adic

completion Ω̂1
K◦/Zp

is always zero.

Proof. For the �rst part, general properties of Kähler di�erentials implies that Ω1
K◦/Zp

[1/p] = Ω1
K◦[1/p]/Qp

=

Ω1
K/Qp

. Thus it su�ces to show that this is nonzero. Let Qp ⊂ L ⊂ K be the maximal purely transcendental
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sub�eld of K/Qp. Then K/L is an algebraic extension. i.e. L → K is a �ltered colimit of �nite separable
(i.e. étale) extensions and L → K is formally étale. This gives an exact sequence

0 → Ω1
L/Qp

→ Ω1
K/Qp

→ Ω1
K/L → 0

and since K/L formally étale implies K/L formally unrami�ed implies that Ω1
K/L = 0, we �nd that

Ω1
L/Qp

∼= Ω1
K/Qp

. Since L/Qp is purely transcendental, we may write L = Qp({xi : i ∈ I}) and therefore

Ω1
L/Qp

=

(⊕
i∈I

Ldxi

)[
1

p

]
Thus it su�ces to show that |I| > 0. Indeed, since K is perfectoid, K/Qp is not �nite, since then K would
be discretely valued. Thus K/Qp is in�nite. Since K is complete, this further implies that |K| > |Qp|
which implies that (1) K/Qp is not algebraic, and (2) that K/Qp has uncountable transcendence degree.
Thus |I| is uncountable and Ω1

K◦/Zp
uncountably generated.

For the second part, note that for any x ∈ K◦, the surjectivity of Frobenius implies that x = yp + pz
for y, z ∈ K◦. Thus dx = p(dy + dz) and pΩ1

K◦/Zp
= Ω1

K◦/Zp
. This then implies that Ω̂1

K◦/Zp
= 0.

Theorem 0.5 (Kedlaya). 1. Any Tate ring A has a topology induced by a submultiplicative norm.

2. Any perfectoid ring K whose underlying ring is a �eld has a topology induced by a nonarchimedean
norm on K. In particular, a perfectoid �eld is the same as a perfectoid ring whose underlying ring is
a �eld.

3. Any perfectoid ring A containing a nonarchimedean �eld K has a topology induced by a submulti-
plicative Banach K-algebra norm. In particular, A perfectoid ring A over a perfectoid �eld K is the
same as a perfectoid K-algebra.

Let A be a perfectoid ring. Since the p-th power map is a map of multiplicative monoids on A, we may de�ne
A♭ = limx7→xp A as a topological multiplicative monoid. The starting point of the theory of perfectoid spaces is
noticing that tilting has good properties:

Theorem 0.6 (Basic Properties of Tilting). Let A be a perfectoid ring. Then

1. A♭ becomes a complete perfect Tate Fp-algebra when addition is de�ned by

(x(0), x(1), . . .) + (y(0), y(1), . . .) = (z(0), z(1), . . .)

z(k) = lim
n→∞

(x(n+k) + y(n+k))p
n

2. The subset A♭◦ is given by the topological ring isomorphism

A♭◦ = lim
x 7→xp

A◦ ∼= lim
Φ

A◦/p ∼= lim
Φ

A◦/ϖ

where Φ denotes Frobenius and ϖ | p is a pseudo-uniformizer in A◦. Here all inverse limits are given
the inverse limit of the discrete topology.

3. There is a pseudo-uniformizer ϖ ∈ A◦ such that ϖp | p in A◦ that admits a sequence of p-th power
roots ϖ1/pn

giving rise to an element ϖp = (ϖ,ϖ1/p, . . .) ∈ A♭◦ which is a pseudo-uniformizer of A♭

making the latter into a perfectoid ring with A♭ = A♭◦[1/ϖ♭] and A♭◦/ϖ♭ ∼= A◦/ϖ.

Proof. (Part 1) We �rst have to show that this is in fact well de�ned. Indeed, for each n ≥ 0 and
m′ ≥ m ≥ 0, we have

(x(n+m′) + y(n+m′))p
m′−m

= (x(n+m′))p
m′−m

+ (y(n+m′))p
m′−m

≡ x(n+m) + y(n+m) mod p

and hence (x(n+m′)+y(n+m′)
)p

m′

≡ (x(n+m)+y(n+m))p
m

mod pm+1. Hence the sequence (x(n+m)+y(n+m))p
m
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converges in A. Moreover,

(x+ y)(k) = lim
n→∞

(x(n+k) + y(n+k))p
n

= lim
n→∞

(x(n+k+1) + y(n+k+1))p
n+1

= ((x+ y)(k+1))p

Commutativity is clear. For associativity, we note that

(x+ y + z)(k) = lim
n→∞

((x+ y)(n+k) + z(n+k))p
n

= lim
n→∞

( lim
m→∞

(x(m+n+k) + y(m+n+k))p
m

+ z(n+k))p
n

= lim
n→∞

(x(n+k) + y(n+k) + z(n+k))p
n

Using the fact that (x(m+n+k) + y(m+n+k))p
m ≡ x(n+k) + y(n+k) mod p. To show that additive inverses

exist, we simply set (−x)(n) = −x(n) if p is odd and (−x)(n) = x(n) if n is even. In the former case, it is
immediate that −x is the desired additive inverse. If p = 2, then we have

(x+−x)(k) = lim
n→∞

(2x(n+k))2
n

= x(k) lim
n→∞

22
n

= 0

From the equality constructed using associativity, we immediately �nd that (px)(k) = limn→∞(px(n+k))p
n

=
x(k) limn→∞ pp

n

= 0. Thus A♭ is an Fp-algebra. The fact that A♭ is complete is immediate as it has the
inverse limit topology from a sequence of complete spaces. The fact that A♭ is Tate will then follow from
the construction of the pseudo-uniformizer in part (3).

(Part 2) We �rst show that the maps above are isomorphisms on the resulting rings. Indeed, suppose
that x = (x0, x1, . . .) is a sequence in either limΦ A◦/p or limΦ A◦/ϖ. Let (x0, x1, . . .) be an arbitrary lift to
a sequence of elements in

∏
N A◦. De�ne the inverse map ℓ : limΦ A◦/ϖ → A♭◦ respectively ℓ : limΦ A◦/p →

A♭◦ via
ℓ(x)(k) = lim

n→∞
xpn

n+k

This limit is well de�ned since ϖ | p implies that in either case, for any n ≥ 0 and m′ ≥ m ≥ 0, we have

xpm′−m

n+m′ ≡ xn+m mod ϖ

hence xpm′

n+m′ ≡ xpm

n+m mod ϖm+1 and the limit converges in A◦ for each k by completeness (this also

implies that the result lies in A♭◦). A similar computation also implies that it is independent of the lift x.
Moreover, by de�nition of the additive structure on A♭, this map is a ring homomorphism. Finally, each
map is an inverse to the quotient map since for any x ∈ A♭◦, x is a lift of the projection to limΦ A◦/p

respectively limΦ A◦/ϖ. Conversely, if x ∈ limΦ A◦/p or limΦ A◦/ϖ, then ℓ(x)(k) ≡ limn→∞ xpn

n+k = xk

mod p respectively ϖ. Finally, since each ring is given the discrete topology, the continuity of the maps in
both direction is clear, so that the isomorphism is in fact a topological isomorphism.

(Part 3) Let ϖ0 ∈ A◦ be any pseudo-uniformizer of A such that ϖp
0 | p. Consider the map A♭◦ =

limΦ A◦/ϖp
0 given by projection to the �rst coordinate. Since the Frobenius map A◦/ϖp

0 → A◦/ϖp
0 is

surjective by de�nition of a perfectoid ring since ϖp
0 is a pseudo-uniformizer, we �nd that the natural

map A♭◦ → A◦/ϖp
0 is surjective. Thus there exists a ϖ♭ lifting ϖ0 ∈ A◦/ϖp

0 . Now consider the map of
multiplicative monoids ♯ : A♭ → A given by projection to the �rst coordinate. Let ϖ = ϖ♭♯. Note that
by de�nition, ϖ admits a sequence of p-th power roots. Moreover, the image of ϖ♭ under the composition
A♭◦ ∼= limΦ A◦/ϖp

0 → A◦/ϖp
0 sends (ϖ,ϖ1/p, . . .) 7→ ϖ mod ϖp

0 . Thus we conclude that ϖ ≡ ϖ0

mod ϖp
0 . In other words, ϖ is a pseudo-uniformizer, and the same then holds for ϖ♭. This then proves the

assumption of the previous proposition. Moreover, it implies that A♭ is Tate �nishing the proof of (1).

To show that A♭ is perfectoid, it su�ces to show that A♭◦/ϖ♭ ∼= A◦/ϖ and that A♭ is uniform. For
the former, consider the induced map of multiplicative monoids ♯ : A♭◦ → A◦/ϖ. Since both rings have
characteristic p, the map of multiplicative monoids is in fact a map of rings. Using the isomorphism
A♭◦/ϖ♭ ∼= (limΦ A◦/ϖ)/ϖ♭, we may �nd for any element α ∈ A◦/ϖ, a compatible sequence (α0, α1, . . .) ∈
A♭◦ such that α0 ≡ α mod ϖ. This implies surjectivity of the map A♭◦ → A◦/ϖ. Suppose now that

α ∈ ker ♯. Then α = (α(0), α(1), . . .) such that α(0) ∈ (ϖ). But then (α(k))p
k ∈ (ϖ) and hence α(k) ∈ (ϖ1/pk

)
(note here that A has no nonzero nilpotents since if x is nilpotent, then Ax ⊂ A◦ is unbounded and hence
A is not uniform). Thus α ∈ (ϖ♭) and the induced map A♭◦/ϖ♭ → A◦/ϖ is an isomorphism.

To show that A♭ is uniform, we show that in fact any perfect characteristic p complete Tate ring A

is uniform. Indeed, if A0 is a ring of de�nition and ϖ a pseudo-uniformizer, write An = A
1/pn

0 and set
A∞ = colimAn. Let f ∈ A◦. Then fN is bounded, so ϖafN ⊂ A0 ⊂ A∞ for some a ≥ 0. Since A∞ is

4



closed under p-th roots, it follows that ϖa/pn

f ∈ A∞ for all n ≥ 0. Thus ϖ1/pn

A◦ ⊂ A∞ for any n ∈ N.
Similarly, consider the Frobenius map Frob : A → A. This is a continuous bijection of Banach spaces and
thus open. Thus ϖmA1 ⊂ A0 for some m ≥ 0 and hence ϖm/pn

An+1 ⊂ An. Thus ϖ
∑n

i=0 m/pi

An+1 ⊂ A0

for all n ∈ N. Thus we may �nd an a such that ϖaA∞ ⊂ A0. Thus there exists an n ∈ N such that
t1/p

n

A◦ ⊂ A0, and A◦ is bounded.

Finally, we must prove that A♭ = A♭◦[1/ϖ♭]. Indeed, if α = (α(0), α(1), . . .) ∈ A♭, then we may write
α(0) = ϖkβ(0) with k ∈ Z and β(0) ∈ A◦. Set β(n) = α(n)/ϖk/pn

. Then (β(n))p
n

= β(0) ∈ A◦, thus
β(n) ∈ A◦ and α = (ϖ♭)kβ with β = (β(0), β(1), . . .) ∈ A♭◦.
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