RIBET’S CONVERSE TO HERBRAND’S THEOREM

AYAN NATH

Abstract. In this article, we present an overview of Ribet’s proof of the converse to Herbrand’s theorem. While
Erickson’s work [Eri08] provides an excellent exposition on the topic, our focus is on elucidating the scheme-
theoretic details found in Ribet’s paper [Rib76, §4], particularly his use of finite flat group schemes towards the
end of the proof, a facet not covered in Erickson’s essay.

1 Introduction

Fix an odd prime number p. Let A be the ideal class group of Q(u,) where ), is the group of all pth
roots of unity as usual. Denote C = A®z [, an Fp-vector space. If C # 0 then p is called irregular.
Define the nth Bernoulli number B, by the exponential generating function

T "
= B,—.
el -1 ,;‘\, "l
1.1. Kummer’s criterion. — p is irregular if and only if p | BoBy -+ B)_3.

The [F-vector space C carries an action of the cyclotomic Galois group A = Gal(Q(u,)/Q) for which
there is an isomorphism y: A — [} given by the mod p cyclotomic character. Thus, there is a A-module
decomposition

C= @ C(Xl)y
O<isp-2
where C(y?) is the part of C on which o € A acts as multiplication by (o). Herbrand’s theorem states
that if C(Xl‘k) # 0 for some even integer k € [2, p — 3] then p | Bi. The main result of [Rib76] is the
following—

1.2. Theorem (Ribet). — Let k be an even integer in [2, p —3]. Then p | By if and only if C(y'~%) #0.
By class field theory, the above theorem is implied by-
1.3. Theorem. — Let k € [2, p —3] be an even integer, and suppose that p | By. There exists a Galois

extension E/Q containing Q(up) such that

(@) The extension E/Q(up) is unramified.
(b) Gal(E/Q(up)) is a nongero abelian group killed by p.
© If o € Gal(E/Q) and 7 € Gal(E/Q(yp)) then oto~! = y (o)~ F7.

Indeed, let E/Q(u,,) be as in Theorem 1.3. Let 6 be the idéle class group of Q(u,) and 6: € — Gal(E/Q(up))

be the (A-equivariant) reciprocity map. Then 6 factors through a surjection C = € ®7F, — Gal(E/Q(up)).
Therefore, we have A-equivariant surjections C(y’) — Gal(E/Q(u,))(x)). When i = 1 — k, we see that the
latter group is nonzero from part (c), and consequently C(y' %) is nonzero. The above theorem is in
turn implied by the following—
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1.4. Theorem. — Let k € 2, p — 3] be an even integer, and suppose that p | Bi. There exists a finite field
F/F, and a Galois representation p: Gal(Q/Q) — GL(F) with the following properties—

(@) p is unramfied at all primes ¢ # p.
(b) The representation p is reducible in such a way that p is isomorphic to a representation of the form

[(1) X,?_l where b: Gal(Q/Q) —F.

(¢) Imp has order divisible by p. That is, p is not diagonalizable.
(d) Let D be a decomposition group for p in Gal(Q/@Q). Then the image of D has order prime to p. That is,
plp is diagonalizable.

We first show that Theorem 1.4 implies Theorem 1.3 with Q(u,) replaced by @(,u},‘k). Indeed, the
claim is that the fixed subfield of Kerp, say E, the Galois number field cut out by p, satisfies the
conditions of Theorem 1.3. Then p induces an injection Gal(E/Q) — GL,(F). It is clear that there is a
tower E/Q(u, *)/@ since Q(u), ¥ is precisely the fixed subfield of Ker y*~*. Further, Gal(E/Q(u), *)) is
an abelian p-group, for the image of Gal(E/ Q)(,u},‘k)) consists of upper unipotent matrices. Since p is
not diagonalizable, it follows that E # @(u},‘k). It is clear that E/ @(u};k) is unramified away from p. It
remains to prove that E/ Q(,u};k) is unramified at the unique prime p of Q(u},‘k) above p. The inertia

group of p in Gal(E/ @(,u};k)) has order prime to p because Im(p|p) has order prime to p, so E/ @(,u};k) is
at worst tamely ramified. However, E/ @(u;‘k) is a p-extension, hence it must be everywhere unramified.

Part (c) of Theorem 1.3 is just a consequence of the matrix identity

a b
0 d

a b
0 d

1 x

1 oad'x
0 1 ’

|0 1

Finally, we can just replace E by E(u,) to get the result in the desired form.

1.5. Alternative explanation bypassing the construction of E. It is easily checked that b is a 1-cocycle
in Z'(Gal(Q/Q),F(y'~%)), and hence gives a cohomology class in H!(Gal(Q/Q),F(y'~%)). In fact, b is
nonzero due to (c). The inflation-restriction sequence gives

0— HY(A,F(xy' %) — H (Gal(@/Q), F(y ') — H (Gal(Q/Q (i), F(x '~ ™.

Note that H' (A, F(y'%)) = 0 since |A| is prime to p. As Gal(@/@(up)) acts trivially on F(y'~%), b gives rise

1 h

0 1

and that h| DAGal@/0Q(,) = 0 from (d). Therefore, h is unramified and factors through the class group
P

B

to a nonzero A-equivariant homomorphism h: Gal(Q/ Qup)) — F(x'~%). We have p| Gal@/Q(,) =

A by class field theory. Since [ has characteristic p, it further factors through C = A®z[F, and gives
a nonzero map C — F(y'~%). Due to A-equivariance, this factors through C(y'~*) and thus implies
ciy' ™% #o.

2 Reductions of p-adic representations

Let K be a finite extension of Q, with integer ring Ok, uniformizer 7, and residue field F. Let V be a
two-dimensional K-vector space. A lattice A is a free @-submodule of V such that A®s K= V.

2.1. Lemma. — Let F be a nonarchimedian local field, G a profinite group, and p: G — GL4(F) a
continuous representation. Then p stabilizes some lattice. In other words, p can be conjugated to a
representation with values in GL4(OF).
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Proof. Choose a basis and consider the standard lattice L = @’;‘?d. The stabilizer of L is precisely GL;(OF),
which is open in GL4(F). Set H = p~'(GL;(0F)), an open subgroup. Then G/H is finite and G stabilizes
Y gec/H 8L U

Let p: Gal(Q/Q) — GL(V) be a Galois representation. For a stable lattice T, we have the associated
reduction, p: Gal(Q/Q) — GL(T/xnT). It is a consequence of Brauer-Nesbitt theorem that the semisimpli-
fication of the reduction doesn’t depend on the choice of T. When p is reducible, their semisimplification
is described by two Galois character ¢, ¢, which depend only on p.

2.2. Ribet’s lemma. — Suppose that the K-representation p is simple but that its reductions are reducible.
Let ¢ and ¢, be the associated Galois characters. Then G leaves stable some lattice A <V for which the

associated reduction is of the form (.l(>)1 but not semisimple.
Proof. See [Rib76, §2.1] or [Eri08, §5.2]. ]

3 A congruence between a cusp form and an Eisenstein series

Let € be a nontrivial character with £(—1) = 1. We consider modular forms on I'; (p). Consider

Goe=L(-1,8)/2+ Z Ze(d)dq",

nzld|n
Gre=L0,8)/2+ ) Y eldq",
n=ld|n
S2c= Yy e(nld)dq".

nzld|n

The first two are Eisenstein series of weights 2 and 1 respectively, and s, is the unique semicusp!
eigenform which is not a cusp form. All these are eigenforms away from p and have Nebentypus e. For
any prime p of Q(up-1) lying above p there is a Teichmiiller lift w: F; — 1. It satisfies w(d) = d (mod p)
for each d € F,.

3.1. Lemma. — Let k€ [2, p - 3] be even. Then G, ., and Gy .1 have p-integral Fourier expansions in
Q(up-1) which are congruent modulo p to Ej.

Sketch. This is easy to see for the nonconstant terms. For the constant coefficient, one easily gets the
result by apply known congruences about Bernoulli numbers. Omitted. 0

3.2. Lemma. — Let k € [2, p — 3] be even. Then there exists a modular form g of weight 2 and type w*=?

whose Fourier coefficients are p-integral and the constant term is 1.

Sketch. We use Lemma 3.1. If p{ By then take G, .. Otherwise, consider the products Gy ,n-1Gy ym-1
for even m, n € 2, p — 3] such that n+ m =k (mod p—1). If none of these work then p divides at least
(p—1)/4 many of By, By, ..., Bp_3. It turns out that this implies that the p-adic valuation of the negative
part h, of the class number of Q(up) is at least (p —1)/4. This is a contradiction due to size reasons. [

Ia semicusp form is a modular form whose constant coefficient is 0.



4 AYAN NATH

3.3. Proposition. — Suppose p | By. There exists a normalized cuspidal newform f =3 ,51 anq" of weight
2, level p, and Nebentypus w*~2, and a prime p, lying above p, of the number field K r generated by the coeffi-
cients a, such that for each prime ¢ # p, the coefficient ay is p-integral and a, = 1+05 1 = 1+0*2(0)¢ (mod n).

Sketch. Consider f = G, ,+-»—cg where c is the constant coefficient of G, ,x-». Then f = G, ,,»-» = E} (mod p).
So f is a mod p eigenform away from p with eigenvalue 1+ w*2(¢)¢ for the Hecke operator Ty, £ # p.
The Deligne-Serre lifting lemma produces a semi cusp form (of level p), which we again denote by f,
satisfying the conditions in the statement of the result. However, we want a cusp form. We know
that s, ,« has eigenvalue w=2(0)+ ¢. Thus, f # Sy k-2 @S w*? is nontrivial, and f must be cuspidal.
Normalize f. I claim that f must be a newform, and hence an eigenvalue for all Hecke operators. Indeed,
if f were old, it must come from a modular form on SL;(Z) since we are working at a prime level. This
is not possible because there are no nonzero weight 2 forms on SL;(2). U

4 The Galois representation

We retain notations of Proposition 3.3. In addition, let @ be the integer ring of Ky, Ky, the completion
of Ky at p, O, the integer ring of K, and [ the residue field at p, and y: Gal(Q/Q) — Z, — K;,p be
the p-adic cyclotomic character. Let A be the abelian variety attached to f. It is a quotient of the
modular Jacobian variety. Define Vy = T, (A) ®z, @, where T, (A) is the p-adic Tate module of A. It
is also dual to the p-adic étale cohomology group Hét(A,@p). Finally, let Vy,, = Vr ®k,eq, Kfp and

Pfp: Gal(Q/Q) — GL( V¢ p) be the p-adic Galois representation attached to f at p. We show that it has a
reduction satisfying the conditions of Theorem 1.4.

4.1. Proposition. — The representation py,, is irreducible.

Proof. See [Rib76, §4.1] or [Eri08, §5.5]. O

4.2. Proposition. — There exists a Galois stable Gy-lattice A < Vy, for which the action of Gal(Q/Q) on

and is furthermore not semisimple.

. . . 1 *
A/mA can be described in terms of matrices as [ 0 yk

Sketch. By Ribet’s lemma 2.2, it suffices to find a Galois stable lattice whose reduction is reducible and
whose semisimplication is 1® y*~!. In fact, we may choose any stable lattice (such lattice exists because
a finite dimensional p-adic representation of a compact group always stabilizes a lattice). We know that
Trace(Froby) = ay and det(Froby) = ¢e(¢) for ¢ # p by the Eichler-Shimura relations. By Proposition 3.3,
these numbers are congruent to ¥~ +1 and ¢¥~! modulo p, respectively. Since Frobenius elements
topologically generate the absolute Galois group the trace and determinant must be 1+ y*~! and y*~!
respectively. By the Brauer-Nesbitt theorem, we are done. O

Fix such a lattice A and set M = A/ A. This will be our p of Theorem 1.4. From Proposition 4.2,
it is clear that parts (b) and (c) are satisfied. Part (a) is a consequence of the fact that A acquires
good reduction away from p. What remains is to check that the image under p of a decomposition
group, say I, of p in Gal(Q/Q) has order prime to p. Note that Q(up)/Q is totally ramified at p. Denote
Qup)™ :=Q(up) NR = Q(cos2n/p). It is a theorem of Deligne-Rapoport [DR72] that A acquires good
reduction everywhere over Q(u,,)*. Since p is prime to [Q(u,)* : Q], it suffices to show that the jamge
of D:= D' nGal(Q/ Q(up)*) under p is of order prime to p. We note that D is a decomposition group in
Gal(Q/Q(up) ") of the unique prime of Q(u,)* lying above p. Denote by E the completion of Q(u,)" at
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p. One can identify D with the local Galois group Gal(E/E). In what follows, all structure morphisms of
schemes are finite type.

4.3. Definition. Let R be a Dedekind domain with fraction field K and A an abelian variety over
K. Then a Néron model 4 is a smooth commutative group over R whose generic fiber is A which is
universal in the following sense: if Xg is smooth over R then any K-morphism Xy xg K — Ag can be
extended to a unique R-morphism Xz — 4.

The universal property tells us that if a Néron model exists then it is unique up to unique isomorphism.
Néron models of abelian varieties always exist, see [CS86, §VIII].

4.4. Definition. Let R be a Dedekind domain with fraction field K. Let G be a commutative group
scheme over R. Then G(K®¢P) is naturally a Gal(K®*P/K)-module, called the Galois module attached to
G.

4.5. Proposition. — The Gal(E/E)-module M is the Galois module attached to a finite flat commutative
group scheme killed by p over the integer ring O of E.

Proof. Let Abe the abelian variety attached to f which induces p r,,. There is an inclusion Ky — Endg A®zQ
given by the Hecke action on A. Change A by a Q-isogeny so that Ok, < Endg A. Indeed, we have

Homg(4, B) ®7 Q = colim 4, , Homg(A', B)
isogeny
for any abelian Q-varieties A, B. This is actually a general fact about localization of categories [Stacks, Tag
05Q5]. Then M is isomorphic to A[p] ={a€ A: ha =0 for all h € p}, the “kernel of p”, as a Galois module.
To see this, recall that the p-adic Tate module T),(A) is an Ok, ®7 Z,,-module in a Galois-compatible
fashion. Since Ok, ®z Zp =Ilpp Ok, p» it follows that there is a Galois-equivariant decomposition

Ty(A) =P T, (A),
plp
where T}, (A) := Tp(A) ®6x,©:2, OKy,p is an O,p-module. Here, T,(A) ® Ky, is in fact V. In particular,
the lattice A of Proposition 4.2 is essentially a “conjugate” of T,(A) in Vy,. Lastly, we obtain that
T, (A) =lim, A[p"] from

_ . n _ .
T, (A) —hrrlnA[p ] —hrrlnA

Hpvp(p)n

plp

=@UmAfp"»""] = Plim A[p"]
plp plp

and applying (-) ®0x,®22, Ok,,p to both sides. Of course, here we are using that A[fg] = A[f]® Alg]
for f, g € Endg A such that (f,g) = (1). Since p | p, M is a submodule, say M’, of the p-torsion subgroup
Alp]. We know that there is a Néron model 4 for A over Oy by Deligne-Rapoport’s result [DR72].
Therefore, M’ is the Galois module attached to the scheme-theoretic p-torsion A[p], which is a finite
flat commutative group scheme over G simply because isogenies are finite flat. Define M to be the
scheme-theoretic closure of M in A[p]. Then M is a finite flat commutative group scheme, killed by p,
over O with attached Galois module M (c.f. Lemma 4.6). Indeed, M = (M x4, E) (E) holds because M
is just a finite set of closed points as a subset of A. O

4.6. Lemma. — Let R be a DVR with fraction field K. Let X be an R-scheme and Yk be a closed subscheme
of Xk = X xg K. Then the scheme-theoretic closure of Yx in X, say Y, is flat over R.

Proof. Without any loss of generality, assume X = Spec A. Suppose Xk is cut out by the ideal I in A®g K.
Then the closure is cut out by In A in A. If A/In A has R-torsion, say ra € In A for some r € R\ {0}
and a€ A\ (In A), then a® 1€ I, which implies a € I n A. We are now done because flatness is same as
torsion-free for PIDs. O


https://stacks.math.columbia.edu/tag/05Q5
https://stacks.math.columbia.edu/tag/05Q5

6 AYAN NATH

4.7. Remark. Using the notations of the above lemma, if X is an R-group scheme and Yk is a closed
subgroup of Xy then Y, the scheme-theoretic closure of Yy in X, is a closed R-subgroup of X. This is
easily checked affine-locally by rewriting things in terms of Hopf algebras.

4.8. Definition. A commutative group scheme G over a base S is said to be an F-module scheme if
there is an injection F — Endg G. This is same as saying Morg(—, G) is a functor valued in F-vector spaces.

The M obtained in the proof of Proposition 4.5 is an F-module scheme where F is the residue field of
Ok. Indeed, it follows from the universal property of Néron models that O — Endg, 4. The [F-action is
then induced from F — Endg, A[p]. Of course, p-torsion points remain p-torsion under the action of an
endomorphism. Thus, there is an action of F on M by Gp-automorphisms. Let us summarise what we
have obtained so far—

(@) M is afinite flat F-module scheme over @ with the attached Galois module M = M (@p) of dimension
2 as an F-vector space.

(b) D acts trivially on a 1-dimensional subspace X of M and via the character y*~! on the quotient
Y=M/X.

4.9. Theorem. — The image of D in Aut M has order prime to p.

We will need the following two results in the proof of Theorem 4.9:

4.10. Theorem (Raynaud [Ray74]). — Suppose E/Q,, is an extension of local fields with ramification
index less than p —1. Let G be a finite flat commutative group scheme over E which is killed by a power of
p. Then there is at most one finite flat extension of G to OF.

Proof. See [Ray74, Theorem 3.3.3], [CSS97, Chapter 5, §4], [Sno], or [Ed92, §5]. ]

4.11. Lemma. — Let E/Q, be a finite extension of local fields and X a finite étale scheme over Og. Then
the Gal(E/E)-action on X (@p) is unramified.

Proof. Indeed, the Gal(E/E)-action on X (@p) factors through a finite quotient of n‘ft(Spec Og) = Gal(E"™ /E)
by the very definition of the étale fundamental group. 0

4.12. Proof of Theorem 4.9. Let & be the scheme-theoretic closure of X in M. Then X is the Galois
module attached to &'. By Theorem 4.10 and Lemma 4.6, it follows that & is a (nonzero) constant
group scheme over Og. In particular, & is a proper, nontrivial étale subgroup. Hence, M cannot be
connected. The connected-étale sequence [CSS97, §V.3.7] states

0— My — Mp — M — 0,
where 2/} is the (geometrically) connected component of Mg containing 0 and MI?‘ the largest étale
quotient. It is not hard to see that the above sequence is an exact sequence of F-module schemes and
the maps therein are defined over E. Taking @ ,-points, we get a sequence of D-representations

0— M°— M— Mt —0.

Now, M° cannot be all of M because M is not connected. Further, M° # 0 because M is unramified as a
Galois module (Lemma 4.11) but M is not. Therefore, dimy M° = dimy M€ = 1. Since M® is unramified
and Y isn’t, the image of M° in M must be distinct from X. Hence, D stabilizes X and the image of M°.
It is easily verified that any element of order p in Aut M leaves stable a unique line. This completes the
proof. O
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