TATE UNIFORMIZATION OF DRINFELD MODULES

AYAN NATH

Abstract. We give an account of Tate uniformization of Drinfeld modules.

1. Introduction

Let us fix the following notations:

e K alocal field with integer ring (G, m, k).

A=F4[T], F=F4(T), Foo = F4 [T V[ TI

Ceo the completed algebraic closure of Fq.

for any characteristic p ring R, the skew-polynomial ring R{t} is defined as the endomorphism
ring EndG, g where 7 denotes the Frobenius endormorphism.

similarly, R{{t}} is the skew-power-series ring.

Definition 1.1. Let E be a Drinfeld module over @. A lattice of rank d in E is an injective A-module
homomorphism v: A — E(K*®P), where A is a free A-module of rank d, whose image is discrete and
invariant under the action of Gal(K%¢P/K).

Definition 1.2. A Tate datum of rank (d;, d») over @ is a pair (E, A), where E is a Drinfeld module of
rank d, over @ and A = (A,v) is a lattice in E of rank d,. For Tate data (E, A,v) and (E/,A’,v') of same
rank, a morphism is a commutative square

A —2 E(K¢P)

o e

v

AI H’ EI(Ksep)

where @ is a A-module map and ¢ is a morhpism of Drinfeld ¢-modules.

The main theorem of Tate uniformization is the following

Theorem 1.3. Let d be a positive number. The category of Tate data (E, A) where E is a rank r Drinfeld
©-module with good reduction and A is a rank d lattice is equivalent to the full subcategory of Drinfeld
modules of rank r + d over @ with stable reduction of rank r.

2. Quotienting by a lattice

For w € Q) with |w| <1, the Tate curve is a rigid analytic elliptic curve defined as Q,/ w?. We will try to
imitate this construction in the case of Drinfeld modules. Let ¢p: A— K{r} be a Drinfeld module and A
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be a lattice. Define .
expp)=x [] [1-5].
AEA\{O}( /1)
This is an F,-linear entire function with coefficients in K because A is discrete and Galois stable. Let
A = ¢, A = Ck. Note that A’ is not necessary free because ¢[a] = A. The following exact sequence is
easily checked

0—plal — AN/A— AlpgA—0. @)
In particular, A has finite index in A’, and consequently A’ is discrete. Observe that the zero set
of exppo¢p, is A'. Thus, aexp, (x) = exp, (P, (x)) by using the characteristic property of exponential

functions and comparing constant coefficients. On the other hand, there exists an [F,-linear polynomial
P, such that exp,, = P,oexp, (see [Pap, Lemma 5.1.4]). Denoting v,(x) = aP,(x), we have

eXpy oPa = Ya0exXp, .

Since exp, and ¢, are defined over K, the same is true for ¥ ,. The following is now clear:

Proposition 2.1. With the above notations, the map y: A— K{t}, a— vy, is a Drinfeld module over K of
rank r +d, where r = rank¢ and d = rank A.

In summary, we have the exact sequence

0— A — H(Cx) =22 (Cx) — 0,

which is called the Tate uniformization of v if ¢ acquires good reduction.

3. Standard endomorphisms

n

Lemma 3.1. Let B be an Fg4-algebra. Suppose u =Y}, u;t’ € Bit} is such that uyg is invertible and

ui,..., Uy are nilpotent. Then u is invertible.

Proof. Straightforward. Omitted. O

Lemma 3.2. Let B be an [ ;-algebra and let d > 0 be an integer. Suppose f = Z?:Ofiri € B{t} is such that
fa€ B* and fy.1,..., fn are nilpotent. Then there exists a unique u =3 j>o u;7/ € B{t} such that up =1, u;
are nilpotent for j=1,and g=u"'fu= Z?Zl gi1' has degree d and g € B*. Such polynomials are called
standard.

Proof. Let N = (fy41,..., [»). There exists some minimal positive integer k such that N* = 0. We induct
on k. If k =1 then there is nothing to do. Suppose the result is true for all k < s. By induction hypothesis
applied to B/N*~! and the image of f therein, there exists u’ and g’ in B{zr} which solve the problem
modulo N*7!. It is easy to see that g/, is a unit and the ideal I = (g/,,,,...,g},) lies in N™~!. Hence,

I*=0. Let .,
f'= (l_fq]:n—dfn_d)°f°(1_fﬁ_ﬂn_d) :

d d
By computing, it can be seen that f’ has leading term bt where m < n. Using induction, this shows the
existence of u. If v is another polynomial satisfying the specified conditions, then consider h = vu~!. We
have h(ufu™') = (vfv~')h, from where it is just a matter of comparing coefficients to derive h=1. [

Lemma 3.3. Let f € G{r} with d = deg f > 0, where f denotes the reduction of f modulo m{r}. There exists a
unique u € R{{t}} such that u=1+Y ;5; a;7’, la;|<1,a; =0, g = u"' fuliesin R{r},and degg = degg = d,
and u is an entire function.
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Proof. By applying Lemma 3.2 to to @/m"™, m = 1, we can form u € R{{r}} such thatdu=1and g = u~! fu.
It's clear that degg = degg = d and that |a;| < 1 because a; is nilpotent modulo m’*!, and in particular
belongs to m. Also, a; — 0 because u; = u;_1 (mod m‘~!). It remains to show that u(x) is entire. For
m > n, comparing the coefficient of 7" on both sides of ug = fu gives

m—1 m—d

q" q qme _ q q"
amgy +am-18 t+ o tAm-a8, =amfota, i+ +Apn_pnfn

which can be rewritten as
qud qd—l d-1 qui q]
Am-d(8, _fdam_d):_zam—igi + Z fjam_j-
i=0 0osj<n
j#d
Here g, is a unit. Taking absolute values and applying triangle inequality,

n n-1 -
|-l sInax{|am—d+1|»---)|a'm|;|am—n|q ylam—n+1|q oo | @l laml),

where |a,,_419° means that the term has been removed. Since |a,- jl<lfor0<j<d-1, we have
Iam_jl"] <lam-jl. Therefore, for i > s:=n-d

qd+s qd+l
lail <maxila;_s|7 ,...,la;—1l7 laial,..laiqld

Denote the set on the right-hand side of this inequality by S;. Now execute the following iterative
process. Initially, put S:=S;. If Iail‘?[ € S for some ¢ = 1, then delete that element from S. Next, replace
each |a j|q[ e Swith j>i by S;.i[, where S?l denotes the set of elements of S; raised to power q’; call
the resulting set S. Repeat the same process for this new S. It is easy to see that with each iteration,
either the elements |a | appear in S to higher powers of g than before or |a ;| has larger index than the
elements in the previous S. At each step of the process we have |a;| < maxS. On the other hand, since
0<|aj|<1forall j>0and |a;|—0as j— oo, the maximum of the elements in S with indices greater
than i will tend to O . Therefore,

d+s d+1
el smaX(Iai—sl" veelaiog)? )
i, . . d
If we denote f§; = |aj|1/q , ] = 1, then the above implies f; < max(8;_s,..., Bi—1)? . From here, one can
d d d .. j+1)d
show that ;2 < max{ﬁ?_s,ﬁfﬂ_s, ...,Bi-1}17 and so on, eventually obtaining ;, j; < max{f;_s,..., ﬁi_l}q(] !
for all j = 0. Since max{f;_s, ..., Bi—1} < 1, it follows that §; — 0. O

4. Proof of Theorem 1.3

Let ¢p: A— Ox{t} be a Drinfeld module with good reduction with ¢7=T+g17+---+g,;7", g € Gf. Then
the construction of Proposition 2.1 gives the desired Drinfeld module. Conversely, suppose we are given
a Drinfeld module v of rank r + d over O so that its reduction y has rank r. By Lemma 3.3, we get
a unique e=1+Y% a;7’ € 1+m{{r}}7, such that ¢ = "'y re € Ok{r} has degree r, ¢ =y, and e is
entire. The roots of u form a lattice A in w(K*°P). Indeed, it is easy to see that A is discrete. Further,
any zero A must satisfy [A| > 1, for if 1] < 1, then e(A) € 1 +m, which cannot be zero. We now have to
show that A is a lattice of rank d. By comparing ranks of the terms of the exact sequence

0— ¢lal = ylal = AlpaA— 0,

we get A/, = (AlaA)®. Choose a ball B centered at 0 of suitable radius such that the map BnA —
AlpgA is surjective. Since |ax| > |x| for each nonzero x, it follows that A is generated by the LHS. This
shows that A is A-free of rank d.
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Next, let ¢: E— E’ be a morphism of Drinfeld modules with stable reduction of same rank. If ¢ # 0
then E and E’ have Tate data (F,A) and (F,A’) of the same rank, v is defined over Og and v is not
0 (mod m). Then ¢ := (1/)"'(w(u)) defines an isogeny F — F'. It is clear that ¢ induces a morphism
A — A'. Conversely, let (¢, ®): (F,A) — (F/, A) be a morphism of Tate data. Put y := uy (p((uy) ™). Itis
then a matter of checking that this is a polynomial. 0
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