
SPECIAL CYCLES ON UNITARY SHIMURA VARIETIES

AYAN NATH

Abstract. This is a brief introduction to Kudla’s generating series of special cycles on unitary Shimura varieties
and statements of modularity.

1. Unitary Shimura varieties

1.1. Setup. Let F be a totally real number field of degree d > 1 and F a CM-extension of F. Let (V ,〈·, ·〉) be
a Hermitian n-dimensional F -vector space whose inner product has signature (n−1,1) at a distinguished
archimedean place ι : F ,→R and signature (n,0) at all other archimedean places. Such an inner product
space is called standard indefinite. For a place ν, we denote Vν = V ⊗F Fν. Let Hermm be the closed
subscheme of ResE/F Matm×m classifying m×m Hermitian matrices. A complex line spanned by a vector
v ∈Vι is called negative-definite if 〈v, v〉 < 0.

1.2. Shimura datum. Let H = ResF /QU(V ), where U(V ) denotes the unitary group. Define

h :S= ResC/RGm −→ HR
∼= U(n −1,1)R×U(n,0)d−1

R

h(z) =
((

1n−1

z̄/z

)
,1n , . . . ,1n

)
.

Let D be the H(R)-conjugacy class of h, defined as H(R)/StabH(R)(h) where StabH(R)(h) is the stabilizer
of h. Noncanonically, it is easily seen that D ∼= U(n−1,1)/(U(n−1)×U(1)). Note that U(n−1,1) acts on the
set of all negative-definite complex lines in Vι transitively with stabilizer of a line being U(n −1)×U(1).
Thus, D can be identified with an open subset of (PVι)an, classifying negative-definite C-lines, where
the complex structure is given by a choice of a complex place of E above ι. Then D is what’s called a
Hermitian symmetric domain for H(R). The pair (G ,D) forms a Shimura datum.

1.3. Shimura manifolds (and varieties). For any open compact subgroup K of H(A∞
Q

), we can form
the double coset space

XK := H(Q)\[D ×H(A∞
Q )]/K

where H(Q) acts diagonally on D ×H(A∞
Q

) on the left, and K acts on H(A∞
Q

) on the right. It comes from
a general fact that H(Q)\H(A∞

Q
)/K is finite. So, after choosing coset representives

H(A∞
Q ) =⊔

i
H(Q)hi K ,

we can write
XK =⊔

i
Γi \D,

where Γi = H(Q)∩hi K h−1
i . If each Γi acts freely on D then XK is a manifold. This is the case when K is

a neat open compact subgroup of H(A∞
Q

).

Fact. The inverse system of complex manifolds {XK }K , with K varying among neat open compact subgroups
of H(A∞

Q
), admit “canonical” models Sh(H ,D) := {ShK (H ,D)}K as quasi-projective varieties over E ⊂C (a

complex place lying above ι). Moreoever, the covering maps XK → XK ′ , when K ⊂ K ′, are given by complex
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analytifications of finite étale covers ShK (H ,D)→ ShK ′(H ,D) defined over E . Further, all the ShK (H ,D) are
projective if and only if V satisfies 〈x, x〉 = 0 ⇐⇒ x = 0.

Remark 1.3.1. If F ̸=Q then the last condition is satisfied due to the signature conditions.

1.4. Hecke action. We remark that H(A∞
Q

) has a natural right action on the inverse system {ShK (H ,D)}K

induced by
D ×H(A∞

Q )→D ×H(A∞
Q ), (x, s) 7→ (x, sh)

for each h ∈ H(A∞
Q

) which maps ShhK h−1(H ,D) to ShK (H ,D). These are called Hecke actions and they are
E -isomorphisms.

2. Special cycles

2.1. Tautological line bundle. There is a tautological line bundle Vι \ {0}→ (PVι)an, whose restriction
over D we denote by L . The H(R)-action on D lifts naturally to L and therefore L descends to a
holomorphic line bundle LK on XK given by H(Q)\L ×H(A∞

Q
)/K → XK . This line bundle is algebraic

and defined over E .

2.2. Weighted special cycles. For brevity, we write XK = ShK (H ,D). Let x ∈ V with 〈x, x〉 > 0 we
can form its orthogonal complement Vx ⊂ V. Then Vx is standard indefinite of dimension n −1. Let
Hx = ResF /QU(Vx ) = StabH x and Dx be the associated Hermitian symmetric domain, which can be
identified with Dx = {z ∈ D : z ⊆ Vx }. Then (Hx ,Dx ) forms a Shimura datum and the embedding of
Shimura datum (Hx ,Dx )→ (H ,D) induces a Hecke-equivariant morphism

ShK∩Hx (A∞
Q

)(Hx ,Dx )→ XK .

It can be checked, say on complex points, that this is a closed embedding of codimension 1.

Definition 2.2.1. Denote the image of the above morphism by Z (x)K . We call

Z (x)K ∈ CH1(XK )

a special divisor. More generally, for a r -tuple of vector x = (x1, . . . , xr ) ∈V r with positive-definite E -span,
denoted x, we can form Hx = ResF /QU(x⊥) and Dx = {z ∈ D : z ⊆ x⊥} giving rise to a special cycle

Z (x)K := Im(ShK∩Hx(A∞
Q

)(Hx,Dx) ,→ XK ) ∈ CHdimx(XK ).

For an element h ∈ H(A∞
Q

), the Hecke-translated special cycle is given by

Z (x,h)K := Im(ShHx(A∞
Q

)∩hK h−1 (Hx,Dx) ,→ XhK h−1
Hecke−→ XK ) ∈ CHdimx(XK ).

For a r -tuple x = (xi ) ∈ V r , define the moment matrix 〈x,x〉 = 1
2 [〈xi , x j 〉]. Fix a Hermitian matrix

T ∈ Hermr (F ) and a K -invariant Schwartz function ϕ ∈S (V r ⊗F A
∞
F ) for the left regular representation

of H(A∞
Q

) on (V ⊗F A
∞
F )r . Suppose that 〈x,x〉 = T. Set ΩT = {v ∈V r ⊗F A

∞
E : 〈v,v〉 = T }. Then

ΩT ∩Suppϕ=⊔
j

K h−1
j x

with h j ∈ H(A∞
Q

). The disjoint union is finite because the K -orbits give an open cover of the compact set
on the left-hand side.
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Definition 2.2.2. For a fixed T ∈ Hermr (F ) and a K -invariant Schwartz function ϕ ∈S ((V ⊗F A
∞
F )r ) we

define the weighted special cycle as

Z ′(T,ϕ)K := ∑
j

〈x,x〉=T

ϕ(h−1
j x)Z (x,h j )K ∈ CHrankT (XK )⊗C.

The weighted special cycle has codimension rankT . To correct this, we take an intersection product
with a suitable power of the first Chern class of the dual of the tautological line bundle L ∨

K .

Definition 2.2.3. For a weighted special cycle Z ′(T,ϕ)K , the corresponding normalized weighted
special cycle is defined as

Z (T,ϕ)K := Z ′(T,ϕ)K · c1(L ∨
K )r−rankT ∈ CHr (Xk )⊗C,

where c1(L ∨
K ) is the first Chern class of L ∨

K .

It turns out that this behaves well under pullback. Namely, if K ′ ⊂ K and pK ′,K : XK ′ → XK is the
natural étale cover, then

p∗
K ′,K Z (T,ϕ)K = Z (T,ϕ)K ′ .

We thus get a well-defined element of CHr (X )C := lim−→K
CHr (XK )⊗C, so we may reasonably drop the

subscript K from the notation.

3. Kudla’s generating series

Let G = U(r,r ) over F , preserving the skew-Hermitian form

Jr =
[

0 1r

−1r 0

]
,

with associated Hermitian symmetric domain

Hr := {τ= (τν)ν = (xν+ i yν)ν : (xν)ν, (yν)ν ∈ Hermr (R), yν is positive-definite for all ν ∈∞F },

where ∞F denotes the set of all real places of F. This is called the Hermitian upper half-space of genus
r .

Definition 3.1. For a K -invariant Schwartz function ϕ ∈S (V r ⊗FA
∞
F ), define Kudla’s generating series

of codimension-r special cycles or arithmetic theta series as the formal power series

Z (τ,ϕ)K := ∑
T∈Hermr (F )

Z (T,ϕ)K qT

for τ ∈Hr and

qT := exp

(
2πi

∑
ν∈∞F

Tr(Tτν)

)
.

Remark 3.2. This generating function behaves well under pullback and hence defines a formal power
series with coefficients in CHr (X )C.
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4. Modularity

For any linear functional ℓ : CHr (XK )C → C, one can form the formal power series ℓ(Z (τ,ϕ)K ) with
complex coefficients and ask whether it converges absolutely and is a holomorphic Hermitian modular
form on Hr .

Conjecture 4.1 (Arithmetic modularity). The power series ℓ(Z (τ,ϕ)K ) converges absolutely for any linear
functional ℓ : CHr (XK )C→C and is a Hermitian modular form on Hr .

We add that [Liu11a, Theorem 3.5] has shown that if it converges absolutely, then it also implies that
it is modular.

There is a cycle class map CHr (XK ) → H2r (XK (C),Z), Z 7→ [Z ], given by viewing cycles as defining
linear functionals on the space of compactly supported closed forms. Using this, one can define a
geometric theta series [Z (τ,ϕ)K ] as a formal power series with coefficients in H2r (XK (C),C). The
classical theorem of Kudla-Milson shows that this is indeed absolutely convergent and modular.

Theorem 4.2 (Kudla-Milson). The power series ℓ([Z (τ,ϕ)K ]) converges absolutely for any linear functional
ℓ : H2r (XK (C),C)→C and is a Hermitian modular form on Hr .
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