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tion of two-dimensional representations of Gal(Qp /Qp ) over an algebraically closed
field of characteristic p, a description of the mod p local Langlands correspondence.
References: Serre’s Local Fields [Ser80] and C. Breuil’s course notes [Br07].

• Chapter 4: a brief discussion on passing from Galois representations to representa-
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Notations.

• p is a fixed prime number,
• k is an algebraically closed field of characteristic p > 0,

• G = GLn(Qp ), K = GLn(Zp ), K (r ) = 1+pr Matn×n(Zp ),r Ê 1.

• For a group Γ, ModΓ is the category of Γ-representations over k, and Modsm
Γ is the

category of smooth Γ-representations over k. Veck denotes the category of k-vector
spaces.

• For a field K , we set GK := Gal(K sep/K ).

• Qpn denotes the unique (after fixing Qp) unramified n-degree extension of Qp .



Chapter 1

Introduction

0.1. Weil-Deligne representations. There is a natural surjection Gal(Qp /Qp )→Gal(Fp /Fp )

which comes from the residue field extension Fp /Fp . The kernel of this map is called the
inertia group. We remark that

Gal(Fp /Fp ) ∼= lim
n

Gal(Fpn /Fp ) ∼= lim
n
Z/nZ= Ẑ,

the profinite completion of Z. There is a special element, called the Frobenius in Gal(Fp ,Fp )

which acts as raising to the pth power. This generates a cyclic group isomorphic to Z inside
Gal(Fp ,Fp ). The preimage of this subgroup along the natural map Gal(Qp /Qp )→Gal(Fp /Fp )

is called theWeil group of Qp , which we denote byWQp . A Weil-Deligne representation is
a pair (ρ0, N ) consisting of a representation ρ0 of the Weil groupWQp , along with a nilpotent
operator N called the monodromy operator, such that

ρ0(σ)Nρ0(σ)−1 = ∥σ∥N

for all σ ∈WQp , where ∥σ∥ is the valuation of the element of Q×
p corresponding to σ under

the isomorphism Q×
p

∼−→W ab
Qp
given by local class field theory.

0.2. p-adic local Langlands. Fix a prime ℓ ̸= p. The classical local Langlands correspon-
dence states roughly that there is an injective map

continuous representations of

Gal(Qp /Qp ) on n-dimensional

Qℓ-vector spaces, up to
isomorphism. Additionally,

Frobenius must act semisimply.


,→



irreducible, admissible
representations ofGLn(Qp )

on Qℓ-vector spaces,
up to isomorphism.


.

A representation G→AutV called admissible if V K is finite dimensional for any compact
open subgroup K of G . To obtain a bijection, the left-hand side is enlarged by replacing it by
the set of Frobenius-semisimple Weil-Deligne representations of the Weil groupWQp . That
is,
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

continuous Weil-Deligne
representations ofWQp on

n-dimensional Qℓ-vector spaces,
up to isomorphism. Additionally,
Frobenius must act semisimply.


←→



irreducible, admissible
representations ofGLn(Qp )

on Qℓ-vector spaces,
up to isomorphism.


.

When ℓ= p, we have “more” Galois representations due to the fact that Gal(Qp /Qp ) and
GLn(Qp ) have compatible topologies.

For n = 1, this correspondence reduces to local class field theory. Indeed, for n = 1, the
left hand side is just continuous homomorphisms Gal(Qp /Qp )→Q×

ℓ
. Such maps factor as

Gal(Qp /Qp )ab→Q×
ℓ

. The local reciprocity map from local class field theory tells us that there
is an “almost isomorphism”

θp : Q×
p→Gal(Qp /Qp )ab.

This is an almost isomorphism in the sense that it factors as an isomorphism through the
profinite completion of Q×

p .

0.3. Mod p local Langlands. We hope to prove something similar in the positive characte-
teristic case, which we state below–

Let k be any algebraically closed field of characteristic p. There is a canonical bijection between
isomorphism classes of smooth irreducible 2-dimensional representations of WQp over k and
isomorphism classes of smooth admissible irreducible supercuspidal representations of GL2(Qp )

over k.

We explain what supercuspidal means. Let B ⊂ GL2(Qp ) be the subgroup of all upper
triangular invertible matrices. A representation G → AutV of a topological group G is
called smooth if the action map G ×V →V is continuous with the discrete topology on V.

Among continuous admissible representations of GL2(Qp ), there are a few called parabolic
inductions. They are of the form:

c-Ind
GL2(Qp )
B

χ := { f : GL2(Qp )→ k locally constant, f (bg ) =χ(b) f (g ) for all b ∈ B , g ∈ GL2(Qp )}

for a smooth character χ : B→ k×, with left action of GL2(Qp ) given by (g · f )(h) := f (hg ′).

Such representations are always smooth admissible and irreducible for “most” χ. A smooth
irreducible admissible representation of GL2(Qp ) over k is called supercuspidal if it is not a
subquotient of a parabolic induction.
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Chapter 2

Mod p representations of GL2(Qp)

1. p-adic Groups

Consider G := GLn(Qp ). This is naturally a topological group with the topology coming
from the complete topology of Qp . It is precisely the subspace topology of the product topol-
ogy given by the inclusion GLn(Qp ) ,→Q⊕n

p . A fundamental system of open neighborhoods
of the identity 1 ∈ GLn(Qp ) is given by

GLn(Zp ) ⊃ 1+p Matn(Zp ) ⊃ 1+p2 Matn(Zp ) ⊃ ·· · ⊃ 1+pr Matn(Zp ) ⊃ ·· ·
For brevity, denote K = GLn(Zp ) and K (r ) := 1+pr Matn(Zp ),r Ê 1.

1.1. Proposition. — GLn(Zp ) is a maximal compact subgroup of GLn(Qp ).

Proof. First of all, GLn(Zp ) is compact because it is the preimage of the closed set Z×
p under

det: MatnZp → Zp , so its closed, and MatnZp is compact because its homeomorphic to
Z⊕n2

p . By the theory of Smith normal form, any A ∈ GLn(Qp ) can be written as A = PDQ

where P,Q ∈ GLn(Zp ) and D is a diagonal matrix. We can also ensure that the diagonal of D

consists of powers of p because we can “absorb” units (of Zp ) into P or Q. So any subgroup
strictly containing GLn(Zp ) must contain a diagonal matrix with at least one of its diagonal
entries having negative p-adic valuation because the product of diagonal entries, which is
the determinant, must be a unit. The subgroup generated by such a diagonal matrix cannot
be compact because of unbounded negative p-adic valuation. □

For n = 2, we also define the following closed subgroups of GL2(Qp )– the Borel subgroup
B of all upper triangular matrices, themaximal torus T consisting of diagonal matrices, the

unipotent radical U =
{[

1 t

0 1

]
: t ∈Qp

}
. Symmetrically, B is the set of all lower triangular

matrices and U =
{[

1 0

t 1

]
: t ∈Qp

}
. There is an exact sequence

1→U→B

[
a b
0 d

]
7→

[
a 0
0 d

]
−−−−−−−−−−−→ T → 1.
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The above exact sequence is split due to the natural inclusion T ,→B. Thus, B = T ⋉U and
analogously B = T ⋉U .

1.2. Iwasawa decomposition. — G = BK .

Proof. We perform “integral” column operations to reduce a matrix to lower triangular form.
Do the following:

• Permute the columns so that the top left entry has minimal p-adic valuation among
entries in the first row.

• Now add suitable integral multiples of the first column to the others so that all the
entries except the top left in the first row is 0.

• Repeat this on the bottom right minor with induction on size of the matrix. □

2. Smooth representations

Fix an algebraically closed field k of characteristic p > 0 and Γ a closed subgroup of
GLn(Qp ), or a finite group with the discrete topology. When we say π is a representation,
we denote the vector space as π itself. All our representations are going to be over k.

2.1. Definition. A representation π of Γ is said to be smooth if the action map Γ×π→π is
continuous where π is given the discrete topology. This is equivalent to saying

π= ⋃
open subgroupsW ⊆Γ

πW

as the following proposition shows.

2.2. Proposition. — Γ×π→π is continuous if and only if π=⋃
W ⊆Γ,openπ

W .

Proof. If Γ×π→π is continuous then the preimage of any vector v ∈π is certainly open as π
has the discrete topology. We can then intersect the preimage with the open set Γ× {v} to
conclude that the stabilizer of v is open. For the other direction, assume π=⋃

W ⊂Γ, openπ
W .

Take any vector v ∈π and look at its preimage, say A, along Γ×π→π. Pick any vector x ∈π
such that A∩ (Γ× {x}) ̸=∅. Then A∩ (Γ× {x}) must be homeomorphic to the stabilizer of v. It
follows that any point in Γ×π, say (γ, x), has a neighborhood contained in Γ×π which is
homeomorphic to the stabilizer of v. Since the stabilizer of v contains an open set, it follows
that Γ×π is open. □

For any (not necessarily smooth) representation Γ, we define the smoothening

π∞ := ⋃
open subgroupsW

πW .

Note that this is the largest smooth subrepresentation of π and it is much stonger than
just being a continuous representation. Smoothness implies that the representation is
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continuous with respect to any topology on π. From now onwards, ModΓ be the cate-
gory of Γ-representations over k and Modsm

Γ be the category of smooth Γ-representations
over k. We remark that (−)∞ : ModΓ → Modsm

Γ is right adjoint to the forgetful functor
Fgt : Modsm

Γ→ModΓ. In terms of universal properties, any map to W , a (not necessarily
smooth) G-representation, from a smooth G-representation factors throughW ∞.

2.3. Induced representations. If H ⊂ G are arbitrary groups and M a H -module, the
canonical way to upgrade it to a G-module is to consider M ⊗Z[H ]Z[G]. In a similar vein,
we define two induction functors. The goal is to find both left and right adjoints to the
restriction functor (−)|H : Modsm

G→Modsm
H . Assume H is a closed subgroup of Γ and σ a

smooth representation of H . Naively, one may define induction as HomH-set(Γ,σ). However,
this is not necessarily smooth.

2.4. Ordinary induction is not always smooth. Take H = {1}, Γ = Q×
p , and σ = Γ set-

theoretically. Then HomH-set(Γ,σ) = MorSet(Γ,Γ). Consider the stabilizer of id: Γ→ Γ. If
it is fixed by some g ∈ Γ then it’s clear that w g = w for each w ∈ Γ. Hence, StabΓ id = {1},

which doesn’t contain any open sets. So id is not a smooth vector.

Define the (smooth) induction as

IndΓH σ := HomH-set(Γ,σ)∞ = { f : Γ→σ : f (hγ) = h · f (γ) for all h ∈ H ,γ ∈ Γ}∞.

The action of Γ is given by (g · f )(γ) := f (γg ). This procedure gives a smooth representation
of Γ from a smooth representation of H . Note that the support of any f ∈ IndΓH σ is clopen
in H\Γ.We may define another type of induction functor for the case when H is an open
(hence closed) subgroup. Define the compact induction as

c-IndΓH σ := { f : Γ→σ : f (hγ) = h· f (γ) for all h ∈ H ,γ ∈ Γ, H\Supp f is compact (i.e., finite)},

where Supp f := f −1(σ \ {0}). It is easy to observe that this is a union of W -cosets so the
(topological) quotient Supp f /W makes sense. This is another procedure which gives a
smooth representation of Γ.

2.5. Proposition. — c-IndΓW τ is smooth. In particular, c-IndΓW τ⊆ IndΓW τ.

Proof. We have seen that c-IndΓW τ is generated by [1, x], x ∈ τ, as a Γ-representation. So, it
suffices to show that [1, x] is a smooth vector for each x ∈ τ. Denoting, f = [1, x] : Γ→ τ, it
is defined as f (w) = w x for all w ∈W and f (w) = 0 otherwise. Then, it is easy to see that
StabW x fixes f , which contains an open subgroup. SinceW is open in Γ, it follows that the
same open subgroup is also open in Γ. □

For γ ∈ Γ and x ∈ τ, denote by [γ, x] ∈ c-IndΓW τ the function supported at W γ−1 and
defined by [γ, x](γ−1) = x. It is easily seen that we have the following relations

[γw, x] = [γ, w · x] for w ∈W, g · [γ, x] = [gγ, x] for g ∈ Γ.
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Also, any element of c-IndΓW τ can be written as∑
i

[γi , xi ] =∑
i
γi · [1, xi ].

Hence, [1, xi ] generates c-IndΓW τ as a Γ-representation. Another way to define compact
induction is c-IndΓH σ=σ⊗k[H ] k[G] as the following result shows.

2.6. Proposition. — c-IndΓW
∼= k[Γ]⊗k[W ] τ as Γ-representations. The isomorphism is given

by [γ, x]→ γ⊗x.

Proof. Consider the k[W ]-bilinear map k[Γ]×τ→ c-IndΓW given by (γ, x) 7→ [γ, x]. Here, we
assume left-action of k[W ] on k[Γ]. By the universal property of tensor products, we get a
map of k[W ]-modules f : k[Γ]⊗k[W ]τ→ c-IndΓW , γ⊗x 7→ [γ, x]. This upgrades to a map of k[Γ]

modules simply because f (gγ⊗x) = [gγ, x] = g ·[γ, x] = g · f (γ⊗x) for all g ∈ Γ.We claim that
this is the required isomorphism. Indeed, it’s clear that f is surjective since functions of the
form [1, x] generate c-IndΓW τ. For injectivity, let’s assume that γ1⊗x1+γ2⊗x2+·· ·+γn⊗xn 7→ 0.

This means that
∑

i [γi , xi ] = 0. We know that Supp[γi , xi ] = W γ−1
i . Suppose γ1 is in the

coset W u. In the sum
∑

i [γi , xi ] = 0, we can delete all the [γi , xi ] with γi ∉ W u. Using
[γw, x] = [γ, w ·x], we can assume γi = γ j := γ for i ̸= j while possibly changing the xi ’s. This
means that [γ,

∑
i xi ] = 0. Hence,

∑
i xi = 0. Thus,

∑
i γi ⊗xi = γ⊗ (

∑
i xi ) = 0. □

2.7. Frobenius Reciprocity. — Let H ⊂ Γ and W ⊂ Γ be closed and open subgroups
respectively. Let π be a smooth Γ-representation, σ a smooth H -representation, and τ a smooth
W -representation. We have canonical isomorphisms

• HomΓ(π, IndΓH σ) ∼= HomH (π|H ,σ).

• HomΓ(c-IndΓW τ,π) ∼= HomW (τ,π|W ).

Proof. For the first part, we have

HomΓ(π, IndΓH σ) = HomΓ(π,HomH (Γ,σ)∞)
∼= HomΓ(π,HomH (Γ,σ)) ((−)∞ is adjoint to Fgt)
∼= HomΓ(Γ,HomH (π,σ))
∼= HomH (π,σ)

= HomH (π|H ,σ).

The second part is just Hom-tensor adjunction. To write it explicitly, we have the isomorphism

HomΓ(k[Γ]⊗k[W ] τ,π) ∼= HomW (τ,π)

given by ϕ 7−→ (t 7→ϕ(1⊗ t )) and its inverse (γ⊗ t 7→ γ ·α(t ))←− [α. □

In other words, IndΓH : Modsm
H →Modsm

Γ is a right adjoint to the restriction functor
(−)|H : Modsm

Γ→Modsm
H . Similarly, c-IndΓW : Modsm

H →Modsm
Γ is a left adjoint to the

9
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same. As a corollary, we obtain that IndΓH preserves limits, in particular left exact, and
c-IndΓH preserves colimits, in particular right exact.

2.8. Corollary (Ind behaves well with tensoring). — Let H be a closed subgroup of G . Given
a representations W and V of G and H , respectively, we have (IndG

H V )⊗W ∼= IndG
H (V ⊗W |H ).

Proof. Immediate from Frobenius reciprocity and universal properties. □

2.9. Pro-p groups. A pro-p group is a topological group which is the inverse limit of an
inverse system of p-groups. Canonical example: Zp .

2.10. Lemma. — K (1) is a pro-p group.

Proof. Indeed, K (1) ∼= lim(1+Matn(Z/prZ)). □

2.11. Example. Let I (1) denote the preimage in K of the upper unipotent

[
1 ⋆

0 1

]
⊂ GL2(Fp ).

This subgroup is pro-p by an argument similar to the previous lemma. It, and conjugates
thereof, are called pro-p Iwahori subgroups of K .

2.12. Lemma. — Any nonzero smooth representation τ of a pro-p group H has H -invariant
vectors, i.e., τH ̸= 0.

Proof. Without loss of generality, assume k = Fp . Fix a nonzero v ∈ τ \ {0}. By continuity,
there exists an open normal subgroupU such that x is fixed by U . Then H/U is a p-group
with a nonzero representation τU . We may now replace H by H/U and assume H is a finite
p-group. The H -orbit of x is finite and consequently there is a finite-dimensional subspace,
say Fm

p , which is stable under H .We may assume m Ê 2 because otherwise H is trivial and
there is nothing to do. Here, GLm(Fp ) is finite as a set whose cardinality is divisible by p.

Write GLm(Fp ) as a disjoint union of H -orbits. By orbit-stabilizer theorem, all orbits have
size a power of p. There is a singleton orbit {0}. Thus, there are other orbits of size 1. □

3. Weights

3.1. Proposition. Any irreducible smooth representation of GLn(Zp ) over k factors through
GLn(Fp ) via the natural surjection GLn(Zp )→GLn(Zp )/K (1) ∼= GLn(Fp ). Further, this induces

10
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a bijective correspondence{
irreducible smooth representations

of GLn(Zp ) over k

}
←→

{
irreducible representations

of GLn(Fp ) over k

}
.

Proof. Since GLn(Zp )/K (1) ∼= GLn(Fp ), it’s clear that there is a map from the right hand side
to the left hand side. For the reverse direction, let π be a smooth GLn(Zp )-representation.
By Lemmas 2.10 and 2.12, πK (1) is nonzero and GLn(Zp )-stable because K (1) is normal in
GLn(Zp ). Because of irreducibility, we have π = πK (1). Thus, π is also a representation of
GLn(Fp ) ∼= GLn(Zp )/K (1). □

3.2. Definition. A smooth irreducible representation of GLn(Zp ), or equivalently GLn(Fp )

by Proposition 3.1, is called a weight.

We remark that there are exactly p −1 weights, all one-dimensional, of GL1(Fp ) ∼= F×p ,
because of existence of primitive roots.

3.3. Lemma. — Any smooth representation π of GLn(Qp ) contains a weight, i.e., a subrepre-
sentation of π|GLn (Zp ) is a weight.

Proof. We use ideas analogous to the proof of Proposition 3.1. Pick a nonzero x ∈πK (1). The
GLn(Zp )-orbit of x spans a finite dimensional GLn(Zp )-subrepresentation of π|GLn (Zp ), and
therefore contains an irreducible subrepresentation. □

From now on, we focus on n = 2. Define

Gp = GL2(Fp ), Bp =
{[

a b

0 d

]
: a,d ∈ F×p , b ∈ Fp

}
, Tp =

{[
a 0

0 d

]
: a,d ∈ F×p

}
,

Up =
{[

1 b

0 1

]
: b ∈ Fp

}
.

3.4. Theorem (Weights of GL2). — The weights of GL2(Fp ) are

F (a,b) := Syma−b k2 ⊗det b ,

where 0 É a −b É p −1 and 0 É b < p −1, where k2 is the natural injection GL2(Fp ) ,→GL2(k)

and detb is the representation GL2(Fp )→ k×, A 7→ (det A)b .

Proof. We divide the proof into steps.

General observations. The symmetric algebra Syma−b k2 can be identified with k[X ,Y ]a−b,
the a−b graded component of the standard graded k-algebra k[X ,Y ]. The action of GL2(Fp )

on F (a,b) ∼= k[X ,Y ]a−b is given by[
α β

γ δ

]
· f (X ,Y ) = f (αX +γY ,βX +δY )(αδ−βγ)b .

11
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Observe that F (a+p−1,b+p−1) ∼= F (a,b) as Gp -representations. We may twist and assume
b = 0 without any loss of generality to show irreducibility of F (a,b). Here we are using that
tensor product of irreducible representations of finite groups is irreducible.

F (a,b) is irreducible. It suffices to show that V := k[X ,Y ]d
∼= Symd k2, 0 É d É p − 1, is

irreducible.

Claim 1. V Up = k X d .

Let f ∈V Up . Then f (X ,uX +Y ) = f (X ,Y ) for each u ∈ Fp . Consider g (Y ) := f (X ,Y )− f (X ,0)

∈ k(X )[Y ]. Note that g (−uX ) = 0 and deg g < p. Thus, g = 0 and f is a scalar multiple of X d .

Claim 2. The GL2(Fp )-orbit of X d spans V.

Indeed, it is easy to see that the polynomials (X +uY )d , u ∈ Fp generates V. This follows
from nonvanishing of a Vandermonde determinant. Put d = a −b. Note that d < p. Consider
the U p orbit of X a−b:

(X +uY )d =
d∑

i=0
ud−i

(
d

i

)
X i Y d−i ,

for each u ∈ Fp . The Vandermonde determinant∣∣∣ud−i
∣∣∣u=0,1,...,d

i=0,1,...,d

= ∏
dÊi> jÊ0

(ui −u j ) ̸= 0.

Therefore, by theory of linear equations, it follows that (X +uY )d ,u = 0,1, . . . ,d span the same
space as X i Y d−i , i = 0,1, . . . ,d . Note that we don’t necessarily need all the p −1 equations.

Finally, if W is a nonzero subrepresentation of V then by Lemma 2.12, W Up ̸= 0. So
W Up = k X d . But by Claim 2, the orbit of this space spans V. Hence, W = V and V is
irreducible.

The F (a,b) are distinct. Since Tp is a subgroup of the normalizer ofUp , it acts on F (a,b)Up = k X a−b .

This action is given by
diag(α,δ)X a−b =αaδb X a−b .

If F (a,b) ∼= F (a′,b′) we must have a−b = a′−b′ because of dimension reasons. We must also
have a ≡ a′ (mod p −1) and b ≡ b′ (mod p −1). Hence, a = a′ and b = b′.

These are all the weights. There are two ways to do this–

• LetV be any irreducibleGp -representation. ThenV Up is a nonzero Tp -representation.
As Tp is abelian of order coprime to p, by Maschke’s theorem, this representation
decomposes as a direct sum of characters. If χ is one such character, then χ ,→V Up

as Tp-representations. This lifts to χ ,→ V as Bp-representations. By Frobenius
reciprocity, we get a nonzero map Ind

Gp

Bp
χ→V , which has to be surjective since V

is irreducible. Therefore, it suffices to show that irreducible quotients of Ind
Gp

Bp
χ are

12



Ayan Nath 2. Mod p representations of GL2(Qp ) VSRP 2023

of the form F (a,b) for each Tp -character χ. The proof is now complete by Lemmas
3.5 and 3.6 below.

• Using modular representation theory (See Sections 4 for the background). The number
of p-modular representations of the finite group Gp is equal to the number of
p-regular conjugacy classes in Gp . Using Jordan canonical form, it follows that
the latter number is exactly p(p −1), which shows that the representations F (a,b)

with 0 É a −b É p −1 and 0 É b < p −1 form a full system of representatives for the
p-modular representations of Gp . □

3.5. Lemma. — We have F (a,b)U p
∼= χa,b as Tp-representations, where χa,b denotes the

character diag(d1,d2) 7→ d a
1 d b

2 . Further, the natural Tp -linear map

F (a,b)Up ,→ F (a,b)↠ F (a,b)U p

is an isomorphism.

Proof. We may assume b = 0 without any loss of generality and identify F (a,0) = Syma k2

with k[X ,Y ]a as before. Consider the following equations[
1 0

u 1

]
X a −X a =

a∑
i=1

(
a

i

)
ui X a−i Y i

[
1 0

u 1

]
X a−i Y i −X a−i Y i =

a∑
k=1

(
a − i

k

)
uk X a−i−k Y i+k .

where 1 É i É a. This shows thatKer(F (a,0)↠ F (a,0)U p
) is spanned by X a−1Y , X a−2Y 2, . . . ,Y a .

Hence, F (a,b)U p
∼= k X a .Wehave seen in Claim 1 in the proof of Theorem 3.4 that F (a,b)Up = k X a .

This proves the lemma. □

3.6. Lemma. — Let a,b ∈Z with 0 É a −b < p −1. Any irreducible quotient of Ind
Gp

Bp
χa,b is

F (a,b) and also F (a +p −1,b) if a = b. Any irreducible subrepresentation of the same is either
F (b +p −1, a) and also F (b, a) if a = b.

Proof. Frobenius reciprocity tells us that Ind
Gp

Bp
↠ F (a′,b′) if and only iff χa,b ,→ F (a′,b′)Up ∼=χa′,b′

(see Lemma 3.5). Similarly, F (a′,b′) ,→ Ind
Gp

Bp
χa,b if and only if χb′,a′ ∼= F (a′,b′)Up ↠ χa,b .

Hence, there do exist quotients and subrepresentations as in the statement of the lemma.
Now,

dimF (a,b)+dimF (a +p −1, a) = (a −b +1)+ (b +p −a) = p +1

and dimInd
Gp

Bp
χa,b = dimχa,b ⊗Fp [Bp ] Fp [Gp ] = [Gp : Bp ] = p +1. □

3.7. Principal series representations. Let χ1,χ2 : Q×
p → k× be two smooth characters.

We then have a smooth character χ1 ⊗χ2 : T → k×. This inflates to a smooth character
13
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χ1 ⊗χ2 : B→ k×, which in turn induces a smooth G-representation χ := IndG
B
χ1 ⊗χ2. This is

an infinite dimensional representation and it’s called a principal series representation.

3.8. Proposition (weights of principal series representations). — Let χ=χ1⊗χ2 : T → k×

be a smooth character as above. We can consider χ as a smooth B -representation. Then

dimk HomK (V , IndG
B
χ|K ) É 1

for all weights V. If χ1|Z×
p
̸= χ2|Z×

p
, then there is precisely one V such that equality holds,

and dimk V > 1. If χ1|Z×
p
= χ2|Z×

p
, then two choices of V such that equality holds, and either

dimk V = 1 or dimk V = p.

Proof. Let V be a weight. The restriction map IndG
B
χ→ IndK

B∩K
χ is an isomorphism of

K -representations. This can be checked manually by using the Iwasawa decomposition (or
see Mackey decomposition 3.11). By Proposition 3.1, we know that χi |Z×

p
factor through F×p .

Let’s write χi |Z×
p

: Z×
p ↠ F×p

ηi−→ k×. Thus,

HomK (V , IndG
B
χ|K ) ∼= HomK (V , IndK

B∩K
(χ1|Z×

p
⊗χ2|Z×

p
)

∼= HomB∩K (V |B∩K ,χ1|Z×
p
⊗χ2|Z×

p
) (Adjunction)

∼= HomB p
(V |B p

,η1 ⊗η2)

∼= HomTp (VU p
,η1 ⊗η2) (U p acts trivially)

Let V = F (a,b). By a brute-force computation, one can check that

F (a,b)U p
= F (a,b)/(k X i Y a−b−i : 0 É i < a −b).

As a Tp -representation, this is isomorphic to the tensor product of two smooth characters,
precisely, the ath-power character and the bth-power character. Hence, HomTp (VU p

,η1⊗η2)

is one-dimensional when VU p
∼= η1⊗η2 and zero otherwise. Therefore, V is fully determined

by ηi . If η1 = η2 then it’s clear that V ∼= F (a,b) for a ̸= b and hence dimk V > 1. On the other
hand, if η1 = η2 then V ∈ {F (a, a),F (p −1,0)}. The former has dimension 1 and the latter is
p-dimensional. □

3.9. Example. Let χ1,χ2 : Q×
p→ k× be two smooth characters. Consider the smooth represen-

tation

χ : B→ E×,

[
α 0

γ δ

]
7→χ1(α)χ2(δ).

Then there is a vector space isomorphism:

{ f ∈ IndG
B
χ : Supp f ⊆ BU }−→C ∞

c (Qp ,k)

f 7−→
(

f 7→ f

[
1 x

0 1

])
,

14



Ayan Nath 2. Mod p representations of GL2(Qp ) VSRP 2023

where C ∞
c (Qp ,k) is the space of all locally constant, compactly supported functions Qp→ k. In

particular, principal series representations are infinite-dimensional.

Proof. The LHS is indeed a vector space because Supp( f + g ) ⊂ Supp f ∪Supp g . First we
show that map

f 7−→
(

x 7→ f

[
1 x

0 1

])

is well-defined– f being a smooth vector implies that f

([
1 x

0 1

]
w

)
= f

([
1 x

0 1

])
holds for

all w in an open subgroup, say V. The arithmetic of U is essentially same as (Qp ,+):[
1 x

0 1

]−1 [
1 y

0 1

]
=

[
1 x − y

1 0

]
.

So we can choose y so close to x that ||x − y || is very small and the right hand side is
contained in V . Hence, the image of f is indeed locally constant. Further, f being a smooth
vector also implies that f −1(0) is open. Therefore, B\Supp f is closed in B\G . By Iwasawa
decomposition, B\G ∼= (B ∩K )\K , which is compact because B ∩K is closed in the compact
group K . In particular, B\Supp f is compact. As B\BU ∼=U , it follows that Supp f ∩U is
compact as well. This proves that the image of f indeed has compact support.

The given map is clearly linear. If some g 7→ 0 then Supp g cannnot be contained in BU .

So it’s injective. Now, we need to check surjectivity. Let φ be any locally constant, compactly
supported, k-valued map from Qp . Define f : G→ k as follows– let f : U→ k be given by

f

[
1 x

0 1

]
=φ(x).

Note that B ∩U = {1}. Hence we can extend it to a map f : BU→ k

f

(
T

[
1 x

0 1

])
= Tφ(x), for all T ∈ B .

Now just extend by zero to get a function f : G→ k. It’s clear that Supp f ⊆ BU and that
Supp f is closed. Choose n so large so that

• the compact open subgroup K (n) is contained in G \ Supp f (possible because
G \ Supp f is open).

• χ|B∩K (n) is trivial (possible since χ is smooth).
• φ(xa) = φ(x) for each x ∈ Qp and each a ∈ 1+ pnZp . Indeed, locally constant +
compactly supported implies that φ takes only finitely many values.

It is now easy to observe that f is fixed by K (n), which shows that f is smooth. □

We end this section by stating two very fundamental but extremely useful results–
15
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3.10. Schur’s lemma. — Let T be a group and V , W be irreducible T -representations.

• If V and W are not isomorphic, then there are no nontrivial T -linear maps between
them.

• If V ∼=W as T -representations, and they are finite-dimensional over an algebraically
closed field, then the only nontrivial G-linear maps is a scalar multiple of the identity.

Proof. See [Ser77, p. 13]. □

For any H -representation ρ over some field, where for g ∈G we put g H := g H g−1 and
gρ is a g H -representation defined as gρ(g hg−1) = ρ(h) for any h ∈ H .

3.11. Mackey decomposition. — Let G be a locally profinite group. Let H and K be closed
subgroups in G. Let ρ be a smooth representation of H over some commutative ring R with
unit.

(1) If either H or K is open in G, then we have the Mackey decomposition

ResG
K c-IndG

H ρ
∼=

⊕
g∈K \G/H

c-IndK
K∩g H Res

g H
K∩g H

gρ.

(2) If K is open in G, then we have the Mackey decomposition

ResG
K IndG

H ρ
∼=

( ∏
g∈K \G/H

IndK
K∩g H Res

g H
K∩g H

gρ

)∞
,

where for a K -representation τ, we denote by τ∞ the K -smooth part of τ.
(3) If we omit the assumption that K is open, there exists an example such that H is open

in G and the isomorphism in (2) does not hold.

Proof. See [Yam]. □

4. Associative algebras and conjugacy classes

The purpose of this section is to provide necessary background for the proof of Theorem
3.4 using modular representation theory. The reader is free to skip it.

4.1. Proposition. — Every reduced algebra is semisimple.

4.2. Wedderburn’s theorem. — Every simple k-algebra is isomorphic to Matn×n(k) for some
positive integer n.

4.3. Proposition. — Let A be a finite-dimensional (not necessarily commutative) algebra
over an algebraically closed field k of characteristic p > 0. Let S = Spank {ab −ba : a,b ∈ A}

and T = {r ∈ A : r q ∈ S for some power q of p}. Then T is a subspace of A, and the number of
isomorphism classes of simple A-modules is dimk (A/T ).

16
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Proof. As A is commutative modulo S, it follows that (a +b)p ≡ ap +bp (mod S). Therefore,
T is a vector subspace of A. Also, it’s easy to check that S ⊂ T. For now, assume that A is
simple. By Wedderburn’s theorem, we may identify A with some matrix algebra Mn(k).

By routine linear algebra, S can be identified with the subspace of traceless matrices. This
can be checked at matrix units. We have dim A/S = 1 by first isomorphism theorem on
Trace: Mn(k)→ k. Therefore, either T = A or dim A/T = 1. As the matrix unit e1,1 is not in
T, it follows that T ̸= A and dim A/T = 1. At this point, we have checked the desired result
for simple algebras A.

For the general case, of course rad A ⊂ T , where rad A denotes the maximal left ideal
of nilpotent elements. It turns that it is a two-sided ideal. Furthermore, it is well-known
that reduced algebras are semisimple. Note that rad A acts trivally on every simple A-
module. Hence, we may replace A by A/rad A. So we may assume A is semisimple. Write
A = A1⊕·· ·⊕ Ar as a direct sum of simple algebras. It is not hard to see that T = T1⊕·· ·⊕Tr .

Therefore, dim A/T = r. Thus, the required result holds since simple modules over A are just
Ai . □

4.4. Proposition. — Let k be an algebraically closed field of characteristic p > 0 and let
A = k[G]. Then the number of p-regular conjugacy classes in G is same as dim A/T.

Proof. Every x ∈G can be written as x = st where s is p-regular and the order of t is a power
of p. If the order of x is npe for p ∤ n then one can take s = xape and t = xbn for ape +bn = 1

(Bezout). Observe that st − s ∈ T. This means that every element of G is p-regular modulo
T. Therefore, there are at least dim A/T p-regular conjugacy classes in G . Let r1,r2, . . . ,rn

be a set of representatives of p-regular conjugacy classes. Suppose
∑

ai ri ∈ T for some
coefficients ar ∈ k. Fix a q, power of p, such that r q

i = ri for each i . Choose q so large that
(
∑

i ai ri )q ∈ S. Then

0 ≡ (
∑

ai ri )q ≡∑
aq

i r (mod S).

Note that S is spanned by expressions of the form ab −ba, and both ab and ba are in
the same conjugacy class. Hence, expressions in S have the property that the sum of the
coefficients of all elements in each conjugacy class is zero. Therefore, aq

i = 0 =⇒ ai = 0. The
proof is complete. □

4.5. Corollary (Brauer’s theorem). — The number of isomorphism classes of simple
k[G]-modules is equal to the number of p-regular conjugacy classes in G .

17
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5. Hecke Algebras for GL2

We fix a smooth G-representation π. We have seen that π|K contains a weight, say V .
The multiplicity of this weight is given by dimk HomK (V ,π|K ). By Frobenius reciprocity,

HomK (V ,π|K ) ∼= HomG (c-IndG
K V ,π).

5.1. Definition. The Hecke algebra of the weight V isHGV := EndG c-IndG
K V.

It is clear that HomG (c-IndG
K V ,π) is a rightHGV -module via pre-composition.

5.2. Proposition. — There is an isomorphism of algebras

HGV ∼= {ϕ : G→ Endk V : ϕ(k1g k2) = k1 ◦ϕ(g )◦k2 for all k1,k2 ∈ K , g ∈G , K \Suppϕ/K is finite}

(5.2.1)

The binary operation on this algebra is the convolution

(ϕ1⋆ϕ2)(g ) = ∑
γ∈K \G

ϕ1(gγ−1)ϕ2(γ).

Here, K \G denotes a set of right-coset representatives and K \Suppϕ/K denotes double cosets.

5.3. Remark. We address well-definedness of the convolution sum in Proposition 5.2 and
alternative definitions of the same. Recall the main differences in definitions:

(a) Breuil’s definition [Br07]: Support is compact modulo center. (the author considers a
general local field F /Qp)

(b) Herzig’s [Herz]: Image of support in K \G/K is finite. (only F =Qp)
(c) Herzig’s [Herz+]: Support is compact. (F =Qp)

I will show that all three are equivalent when F =Qp .

• (a)=⇒ (b). Let f be a function whose support is compact modulo the center. Let’s
write Supp f =⊔

a K aK , union of disjoint double K -cosets. Certainly, K aK is open
compact. Indeed, it is a continuous image of the compact set K ×K and it is open
because K and aK are open. Further, two disjoint cosets remain disjoint when
considered modulo Q×

p . Quotient maps of topological groups are open. Therefore,
the images of K aK under GL2(Qp )→GL2(Qp )/Q×

p are disjoint compact opens. If
this image is compact, then the union Supp f =⊔

a K aK must be finite.

• (b)=⇒ (c). Supp f is a finite disjoint union of double cosets, say ⊔n
i=1 K ai K . Then

Supp f is certainly compact because any double coset K aK , being a continuous
image of K ×K , is compact too.

• (c)=⇒ (a). This is trivial because continuous image of compact is compact.
18
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Now one has to check whether ∑
γH∈G/H

ϕ1(γ)◦ϕ2(γ−1g )

is a finite sum. Note that the sum is independent of representatives. Now Suppϕ1 is compact
so is only contained in finitely many left cosets γH (recall H is open and the cosets form an
open cover of G , whence of Supp(ϕ1)). So the first term ϕ1(γ) in the sum vanishes outside
finitely many left cosets γH . So composition ϕ1(γ)◦ϕ2(γ−1g ) is also finite outside finitely
many cosets γH (don’t need to argue with the second term). Thus the sum is finite.

5.4. Proof of Proposition 5.2. First we sketch the main idea.

HGV
Adjunction∼= HomK (V ,c-IndG

K V |K ) ⊂ MorSet(V ,MorSet(G ,V )) ∼= MorSet(G ,MorSet(V ,V )).

The right hand side of (5.2.1) is a subset of MorSet(G ,MorSet(V ,V )). Take some

(v 7→ fv ) ∈ HomK (V ,c-IndG
K V |K ).

The image in MorSet(G ,MorSet(V ,V )) is a function ϕ given by ϕ(g )(v) = fv (g ). From K -
linearity and definition of induction, we have

ϕ(k1g k2)(v) = fv (k1g k2) = k1 fk2v (g ) = k1(ϕ(g )(k2v)).

Therefore, Suppϕ = G \ {g ∈ G : g ∈ Ker fv for all v ∈ V } = ⋃
v∈B1(V ,0) Supp fv , which is com-

pact as the unit ball is compact. We now check the product. Let ϕi ∈ Mor(G ,EndV ) be
corresponding to ψ′

i ∈ EndG c-IndG
K V and ψi ∈ HomK (V ,c-IndG

K V ) for i ∈ {1,2}. By definition,
ψi (x) =ψ′

i [1, x]. Note that ψ′
i ([1, x])(γ) =ψi (x)(γ) =ϕi (γ)(x). Therefore,

ψ′
i ([1, x]) = ∑

γ∈K \G
[γ−1,ϕi (γ)(x)] = ∑

γ∈K \G
γ−1[1,ϕi (γ)(x)].

Composing,

ψ′
1(ψ′

2([1, x])) =ψ′
1

( ∑
γ∈K \G

γ−1[1,ϕ2(γ)(x)]

)
= ∑
γ2∈K \G

γ−1
2

∑
γ1∈K \G

[γ−1
1 , (ϕ1(γ1)◦ϕ2(γ2))(x)]

= ∑
γ1,γ2∈K \G

[γ−1
2 γ−1

1 , (ϕ1(γ1)◦ϕ2(γ2))(x)]

= ∑
γ∈K \G

[
γ−1,

∑
γ2∈K \G

ϕ1(γγ−1
2 )◦ϕ2(γ2)(x)

]
,

via the change of variable γ= γ1γ2. □

Given a Hecke operator ϕ ∈HGV and f ∈ HomK (V ,π|K ), the right action of the Hecke
algebra is given by

( f ·ϕ)(v) = ∑
g∈K \G

g−1 f (ϕ(g )v).
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To see this, Letψ′ andψ correspond toϕ as in the above proof. Suppose f ′ ∈ HomG (c-IndG
K V ,π)

corresponds to f . Using the results in the previous proof,

f ′(ψ(x)) = f ′
( ∑
γ∈K \G

γ−1 · [1,ϕ(γ)(x)]

)
= ∑
γ∈K \G

γ−1 · f (ϕ(γ)(x)).

We get a better understanding of K \G/K from the following lemma

5.5. Cartan decomposition. — G =⊔
rÉs K diag(pr , p s)K .

Proof. By the theory of smith normal forms, we know thatG =⋃
rÉs K diag(pr , p s)K (c.f. Propo-

sition 1.1). Given distinct pairs (r, s), (r ′, s′),r É s,r ′ É s′ we need to show that K diag(pr , p s)K ̸=
K diag(pr ′

, p s′)K . Suppose not. Looking at p-adic valuation of determinants, we have
r + s = r ′+ s′. Further, looking at the norm of both sides, we get r = r ′. Proved. □

5.6. Theorem (Hecke algebras for GL2). —

(1) For any pair of integers r É s, there is a unique Hecke operator Tr,s ∈HGV such that
SuppTr,s = K diag(pr , p s)K and Tr,s diag(pr , p s) ∈ Endk V is a linear projection.

(2) {Tr,s}rÉs forms a basis for HGV.

(3) We have an isomorphism of k-algebras HGV ∼= k[T1,T2,T −1
2 ] where T1 = T0,1 and

T2 = T1,1. In particular, HGV is commutative.

Proof.

(1) Because of how Hecke operators are defined, ϕ ∈HGV is determined by the choice
of its values at matrices of the form diag(pr , p s). Pick some nonzero matrix A such
that k1 diag(pr , p s) = diag(pr , p s)k2 implies k1 A = Ak2. Define ϕ : G→ Endk V as

ϕ(g ) =
k1 Ak2, ifg ∈ k1 diag(pr , p s)k2

0, otherwise
.

It is easily seen that this is a well-definedHecke operator supported at K diag(pr , p s)K ,
provided such an A exists. We also need to show that such A is unique upto scaling.

• r = s.We show that A is a nonzero multiple of identity. Wemust have k◦A = A◦k

for all k ∈ K . Then V
A−→V is a nonzero K -module map, which by Schur’s lemma

must be a nonzero multiple of identity.
• r < s. Note that existence of a k2 such that k1 diag(pr , p s) = diag(pr , p s)k2 is
equivalent to

k1 ∈ K ∩diag(pr , p s)K diag(pr , p s)−1 =
{[

a b

c d

]
∈ K : a,d ∈Z×

p , b ∈Zp , c ∈ p s−rZp

}
.
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An analogous statement holds for k2. So we may write

k1 =
[

a b

p s−r c d

]
, k2 =

[
a p s−r b

c d

]
for a,b,c,d as above. By Proposition 3.1, the condition k1 A = Ak2 is equivalent
to [

a b

0 d

]
A = A

[
a 0

c d

]
,

where the bar means “reduction modulo p”. We may rewrite this as[
1 b

0 1

]
A = A, A = A

[
1 0

c 1

]
, diag(a,d)A = A diag(a,d).

This implies that there is a commutative square

V V

VU p
V Up .

A

A

The third condition says that A is Tp-linear. By Lemma 3.5, it follows that
the space of such A is at most 1-dimensional and we may take Tr,s to be
corresponding to any such nonzero A. It’s also clear that such A’s are linear
projections.

(2) Any f ∈HGV can be written as

f = ∑
rÉs

f |K diag(pr ,p s )K .

(3) Consider the following claims.
(a) Ti ,i Tr,s = Tr+i ,s+i = Tr,sTi ,i . In particular, T0,0 is the identity, T2 is invertible and

T r
2 = Tr,r .

(b) Tr,sT1 = Tr,s+1 +∑
i>0 ai Tr+i ,s+1−i for some ai ∈ k.

We first outline the proof. Consider the following claims.

Claim 1. Ti ,i Tr,s = Tr+i ,s+i = Tr,sTi ,i .

In particular, T0,0 is the identity, T2 is central and invertible, and T r
2 = Tr,r .

Claim 2. Tr,sT1 = Tr,s+1 +∑
i>0 ai Tr+i ,s+1−i for some ai ∈ k.

Combining these two results, we have, for r É s,

T s−r
1 T r

2 = T r
2 T s−r

1 = Tr,s +
∑

1ÉiÉ(s−r )/2
a′

i Tr+1,s−i

for some a′
i ∈ k. This is shown by a simple induction on s−r. Therefore, {T s−r

1 T r
2 }rÉs

forms a basis forHGV. This proves the desired result.
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Proof of Claim 1.

Tr,sTi ,i (g ) = ∑
γ∈K \G

Tr,s(gγ−1)Ti ,i (γ)

= Tr,s

(
g diag(p i , p i )−1

)

=



1, if r = s and g ∈ K

pr+i 0

0 p s+i

K

k1Pk2, if r < s and g = k1

pr+i 0

0 p s+i

k2

0, otherwise

= Tr+i ,s+i (g ).

Similarly, one can check that Tr+i ,s+i = Tr,sTi ,i .

Proof of Claim 2. Using Claim 1, we may multiply out by T −r
2 = T−r,−r to assume

r = 0 without any loss in generality. The convolution formula says

(T0,s ⋆T1)(g ) = ∑
γ∈K \G

T0,s(gγ−1)T1(γ).

Hence,
SuppT0,sT1 ⊂ K diag(1, p s)K diag(1, p)K .

By looking at the determinant and using Cartan decomposition,

SuppT0,sT1 ⊂
⊔

0ÉiÉ(s+1)/2
K diag(p i , p s+1−i )K .

So we can find ai ∈ E such that

T0,sT1 =
∑

0ÉiÉ(s+1)/1
ai Ti ,s+1−i .

We now need to show that a0 = 1. Indeed,

T0,sT1 diag(1, p s+1) = ∑
γ∈K \G

T0,s(diag(1, p s+1)γ−1)T1(γ)

= ∑
γ∈K \K diag(1,p)K

T0,s(diag(1, p s+1)γ−1)P

= ∑
γ∈

{[
0 1
−p 0

]}
∪

{[
1 u
0 p

]
: 0ÉuÉp−1

}T0,s(diag(1, p s+1)γ−1)P

= T0,s

[
0 p−1

p s+1 0

]
T1

[
0 1

−p 0

]
+

p−1∑
u=0

T0,s

[
1 −up−1

0 p s

]
T1

[
1 u

0 p

]
= T0,s diag(1, p s)T1 diag(1, p) = T0,s+1 diag(1, p s+1). □

5.7. Definition. Let V be a weight. A K -linear map f : V → π is an eigenvector of the
Hecke operator ϕ ∈HGV with eigenvalue λ ∈ k if f ·ϕ=λ f . If f is an eigenvector for each
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ϕ then f is called a Hecke eigenvector and the eigenvalues corresponding to T1 and T2 are
called its eigenvalues.

5.8. Proposition (Hecke eigenvectors). — Suppose χ : T → k× is a smooth character and
f : V ,→ IndG

B
χ is a K -linear embedding of the weight V. Then f is Hecke eigenvector of HGV ,

precisely,

f ·T1 =χ(diag(1, p)−1) f

f ·T2 =χ(diag(p, p)−1) f .

Proof. From Proposition 3.8, it follows that f is a Hecke eigenvector. To find the eigenvalues,
one can perform a direct, but long, calculation. For the second equality,

( f ·T2)(x) = ∑
g∈K \G

g−1 f (T2(g )x) = diag p, p−1 f (T2(diag(p, p))x) = diag(p, p)−1 f (x).

The eigenvector corresponding to T1 is the ratio between ( f ·T1)(x)(1) and f (x)(1). By the
Hecke-action formula,

S = ( f ·T1)(x)(1) = ∑
γ∈K \G

f (T1(γ)(x))(γ−1).

By definition, T1 is supported at K diag(1, p)K .We have

K diag(1, p)K = K

[
0 1

−p 0

]
⊔ ⊔

0ÉuÉp−1
K

[
1 u

0 p

]
.

Therefore,

S =
p−1∑
u=0

f

(
T1

[
1 u

0 p

]
x

)[
1 −up−1

0 p−1

]
+ f

(
T1

[
0 1

−p 0

]
x

)[
0 −p−1

1 0

]

=
p−1∑
u=0

f (x)

([
1 −up−1

0 p−1

])
+ f

(
P

[
0 1

−1 0

]
x

)([
0 −p−1

1 0

])
,

where P = T1 diag(1, p) and we are using the factorisation[
1 u

0 p

]
=

[
1 0

0 p

][
1 u

0 1

]
,

[
0 1

−p 0

]
=

[
1 0

0 p

][
0 1

−1 0

]
.

Note that [
1 −up−1

0 p−1

]
=

[
up−1 0

−p−1 u−1

][
1 pu−1

0 1

][
0 −1

1 0

]
.

Therefore,

f (x)

([
1 −up−1

0 p−1

])
=


χ(diag(1, p)−1) f (x)(1), if u = 0

χ(diag(up−1,u−1)) f (x)

1 pu−1

0 1

0 −1

1 0

 , otherwise.
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It is easy to verify using the definitions that f (x)

([
1 pu−1

0 1

][
0 −1

1 0

])
= 0 if dimV > 1.

Therefore, the result is verified when dimV > 1. When dimV = 1, we know that V ∼= det⊗b .

Therefore,

S =χ(diag(1, p)−1) f (x)(1)+
p−1∑
u=1

χ(diag(up−1,u−1)) f (x)

([
1 pu−1

0 1

][
0 −1

1 0

])

+ f (x)

([
0 −p−1

1 0

])
=χ(diag(1, p)−1) f (x)(1). □

6. Mod-p Satake transform

Denote by Veck the category of all k-vector spaces.

6.1. Lemma. — There is a natural isomorphism of functors Modsm
T →Veck

HomG (c-IndG
K V , IndG

B
(−)) ∼= HomT (c-IndT

T∩K VU p
,−).

We denote this map by f 7→ fT .

Proof. Observe that

HomG (c-IndG
K V , IndG

B
(−)) ∼= HomK (V , IndG

B
(−)|K ) (Adjunction)

∼= HomK (V , IndK
B∩K (−|T∩K )) (Iwasawa decomposition)

∼= HomB∩K (V ,−|Tp ) (Adjunction)
∼= HomT∩K (VU p

,−|T∩K )

∼= HomM (c-IndT
T∩K VU p

,−). (Adjunction)

□

Any Hecke operator ϕ ∈ HGV gives a natural endomorphism, i.e., a natural transfor-
mation to itself, of the functor HomG (c-IndG

K V , IndG
B

(−)). By the above lemma, this gives
a natural endomorphism of HomT (c-IndT

T∩K VU p
,−). All endormorphisms of the same are

given by the Hecke algebraHT VU p
:= EndT c-IndT

T∩K VU p
by the Yoneda lemma. Thus, we

obtain a natural map
SG : HGV −→HT VU p

.

This is called the mod-p Satake transform. We remark that

HT VU p
∼=

{
ϕ : T → Endk VU p

: ϕ(k1g k2) = k1 ◦ϕ(g )◦k2

for all k1,k2 ∈ K ∩T, g ∈ T, (K ∩T )\Suppϕ/(K ∩T ) is finite

}
24



Ayan Nath 2. Mod p representations of GL2(Qp ) VSRP 2023

follows by imitating the proof of Proposition 5.2. It’s clear that ( f ◦ϕ)T = fT ◦SG (ϕ) for each
f ∈ HomG (c-IndG

K V , IndG
B

W ),W ∈ Ob(Modsm
T ).

6.2. Proposition. — SG is a homomorphism of algebras.

Proof. To check that it respects multiplication, note that

fT ◦SG (ϕ1 ◦ϕ2) = ( f ◦ϕ1 ◦ϕ2)T = ( f ◦ϕ1)T ◦SG (ϕ2) = fT ◦SG (ϕ1)◦SG (ϕ2).

Similarly, additivity and identity can be checked. □

6.3. Proposition. — We have the following explicit formula

SG (ϕ)(t ) = ∑
u∈(U∩K )\U

prU ◦ϕ(ut ).

Here, prU : V ↠VU p
and we are viewingϕ and SG (ϕ) as functionsG→ Endk V and T → EndT VU p

,
respectively. The expression on the right hand side is a sum of linear maps V ↠VU p

and implicit
in the statement is the assertion that the sum factors through V ↠VU p

to a map VU p
→VU p

.

Proof. The proof of this is just a long computation. See [Herz+, Proposition 27]. □

6.4. Remark. We verify well-definedness of the explicit formula for SG given in Proposition
6.3.

(1) Finiteness of the sum. Suppose (U ∩K )a and (U ∩K )b be two distinct cosets where
ϕ is nonzero. Since they are distinct, we must have ab−1 ∉U ∩K . This means that
K aK and K bK are distinct double cosets in Suppϕ. Since Suppϕ consists of finitely
many distinct double cosets of K , the sum is finite.

(2) The sum is independent of coset representatives. Let A ∈U ∩K .We want to show that

prU ◦A ◦ϕ◦ut = prU ◦ϕ◦ut .

Let x ∈V. Put ϕ◦ut x = v. Then we wish to show that prU (Av) = prU (v), which is
obviously true because Av − v = 0 in VU .

(3) Factors through coinvariants. Let A ∈U ∩K . By universal property of coinvariants, it
is enough to check that SG (ϕ)(Ax −x) = 0 for a general x ∈V. But this is trivial by
observations in (2).

One can obtain an analog of Theorem 5.6 quite easily because T is abelian. Define
τr,s ∈HT VU p

by

Suppτr,s = (T ∩K )diag(pr , p s)(T ∩K ), τr,s diag(pr , p s) = 1.

Set τ1 := τ0,1 and τ2 := τ1,1. Then τr,s = τs−r
1 τr

2 and HT VU p
∼= k[τ1,τ2,τ−1

1 ,τ−1
2 ]. It is just a

matter to computation to show that SG (Ti ) = τi for i ∈ {1,2}.

6.5. Theorem. — The Satake transform SG : HGV →HT VU p
is injective.
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Proof. We employ the universal property. We know that ( f ◦ϕ)T = fT ◦ SG (ϕ) for any
f ∈ HomG (c-IndG

K V , IndG
B

W ) where W is a B-representation. Suppose SG (ϕ) = 0. Then
f ◦ϕ= 0 for each B -representationW and f ∈ HomG (c-IndG

K V , IndG
B

W ).We know by Lemma
6.1 that

HomG (c-IndG
K V , IndG

B
W ) ∼= HomT∩K (VU p

,W |T∩K ).

By symmetry, it suffices to find a nonzero f . Lemma 3.5 tells us that dimk VU p
= dimk χa,b = 1.

Hence, it suffices to findW so that HomT∩K (χa,b ,W |T∩K ) ̸= 0. Just chooseW =χa,b viewed
as a B -representation through B ↠ T. The proof is complete. See [Herz+, Theorem 29] for
an alternative approach. □

6.6. Theorem. — The image of SG is k[τ1,τ2,τ−1
2 ].

Proof. By Theorems 6.5 and 5.6, it is sufficient to verify that SG (Ti ) = τi for i = 1,2. This
follows almost immediately by the explicit formula. □

Thus, the map SG corresponds to the natural injection of k-algebras

k[T1,T2,T −1
2 ] ,→ k[τ1,τ2,τ−1

1 ,τ−1
2 ], T1 7→ τ1, T2 7→ τ2.

In other words, SG is the localization map which inverts T1.

7. Comparison between compact and parabolic induction

We describe comparison isomorphisms between compact and parabolic induction. Fix a
character χ : T → k×, a weight V , and a K -module embedding into the parabolic induction
f : V ,→ IndG

B
χ. Frobenius reciprocity gives us a nonzeroG-linear map f̃ : c-IndG

K V → IndG
B
χ.

Since f is a Hecke eigenvector, f̃ is too. This is easily seen by identifying c-IndG
K V ∼= k[G]⊗k[K ]V

and using explicit formulas. Define the character χ′ : HGV → k× by

χ′(T1) =χdiag(1, p)−1, χ′(T2) =χdiag(p, p)−1.

By universal property of tensor products, f̃ factors as

f̂ : c-IndG
K V ⊗HG V χ

′−→ IndG
B
χ.

Our aim is to prove the following theorem.

7.1. Theorem. — This map is an isomorphism if dimV > 1.

Consider the natural G-linear map

F : c-IndG
K V → IndG

B
c-IndT

T∩K VU p
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which comes from the natural T ∩K -linear map VU p
→ c-IndT

T∩K VU p
, x 7→ [1, x], via the

following natural isomorphisms

HomT∩K (VU p
,c-IndT

T∩K VU p
) ∼= HomB∩K (V ,c-IndT

T∩K VU p
) ∼=

HomK (V , IndK
B∩K

c-IndT
T∩K VU p

) ∼= HomG (c-IndG
K V , IndG

B
c-IndT

T∩K VU p
).

7.2. Lemma. — F is HGV -linear with respect to SG , i.e., F ◦ϕ = IndG
B

SG (ϕ) ◦F for each
ϕ ∈HGV. (Remember that IndG

B
is a functor)

Proof. It suffices to check that F◦Ti = IndG
B
τi◦F for i ∈ {1,2}. Let F ′ ∈ HomK (V , IndG

B
c-IndT

T∩K VU p
)

correspond to F via the series of isomorphisms discussed before. We know from Propositon
5.8 that F ′ is Hecke-linear. We are now done because the Frobenius reciprocity isomorphism

HomK (V , IndG
B

c-IndT
T∩K VU p

) ∼= HomG (c-IndG
K V , IndG

B
c-IndT

T∩K VU p
)

is clearly Hecke-linear. □

Since SG (T1) = τ1 is invertible, we get an induced G-linear and (HGV )[T −1
1 ]-linear map

F : c-IndG
K V ⊗HG V (HGV )[T −1

1 ]−→ IndG
B

c-IndT
T∩K VU p

.

7.3. Lemma. — F is injective, and is an isomorphism if dimV > 1.

We first see how the above result proves Theorem 7.1.

7.4. Proof of Theorem 7.1. From Lemma 7.3, we have the isomorphism

F ⊗(HG V )[T −1
1 ]

χ′ : c-IndG
K V ⊗HG V χ

′−→ (IndG
B

c-IndT
T∩K VU p

)⊗(HG V )[T −1
1 ]

χ′.

By Corollary 2.8,

(IndG
B

c-IndT
T∩K VU p

)⊗(HG V )[T −1
1 ]

χ′ ∼= IndG
B

(c-IndT
T∩K VU p

⊗(HG V )[T −1
1 ]

χ′).

So, it suffices to show that

c-IndT
T∩K VU p

⊗(HG V )[T −1
1 ]

χ′ ∼=χ,

which is obvious because of the identifications

HGV ∼= k[T1,T2,T −1
2 ], χ′ ∼= k[T1,T2,T −1

2 ]/(T1 − (χdiag(1, p))−1,T2 − (χdiag(p, p))−1). □
We will use the following result in the proof of Lemma 7.3.

7.5. Bruhat decomposition. — G = B ⊔B wB , where w =
[

0 1

1 0

]
.

Proof. This just row reduction from rudimentary linear algebra. The rightmost B is the
echelon form of a matrix, the factor of w accounts for rows having to be reordered, and the
leftmost B is the coefficient matrix of the Gauss-Jordan elimination algorithm. □
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7.6. Proof of Lemma 7.3. We show injectivity by using the theory of mod-p Satake transform.
It suffices to show that

F : c-IndG
K V → IndG

B
c-IndT

T∩K VU p

is injective. Indeed, the Satake map SG is a localization andHGV is a domain. Suppose F is
not injective and there is a weight V ′ ,→ (KerF )|K . By Frobenius reciprocity, this induces a
nonzero G-linear map

θ : c-IndG
K V ′−→KerF.

Because of funtoriality of IndG
B
and SG and Lemma 7.2, we have a commutative square

c-IndG
K V IndG

B
c-IndT

T∩K VU p

c-IndG
K V IndG

B
c-IndT

T∩K V ′
U p

.

F

θ

F ′

IndG
B

SG (θ)

Hence, IndG
B

SG (θ)◦F ′ = 0. With notations of Lemma 6.1, F ′
T is identity. Thus,

SG (θ) = IndG
B

SG (θ)
T
= 0.

We are now done by Theorem 6.5.

We follow [Herz+, p. 18-19] to prove surjectivity. Fix x ∈ V. Then f := F ([1, x]) is a
B-equivariant function G → c-IndT

T∩K VU p
mapping tuk to [t ,kx], t ∈ T, u ∈ U , k ∈ K . To

compute Supp f , we want to determine when kx ̸= 0 in VU p
. By Bruhat decomposition,

after multiplying by w :=
[

0 1

1 0

]
, Gp = wBp ⊔B p Bp . For kx ̸= 0, we want k ∈ B p Bp = B pUp

because w x ∈ Ker(V ↠ VU p
). Note that I (U ∩K ) = (B ∩K )(U ∩ I )(U ∩K ) = (B ∩K )(U ∩K ).

Therefore, Supp f ⊆ B(U ∩K ). However,

f

[
1 a

0 1

]
= [1, x].

So Supp f = B(U ∩K ). Consider

{ f ∈ IndG
B

c-IndT
T∩K VU p

: Supp f ⊂ BU } ∼=C ∞
cpt(Qp ,c-IndT

T∩K VU p
)

g 7−→
(

g † : a 7→ g

[
1 a

0 1

])
.

This is a B -linear isomorphism (c.f. Example 3.9). The B -actions are[
1 u

0 1

]
g †(a) = g †(a +u),

[
x 0

0 y

]
g †(a) = g †(ay/x).

Also, f †(t ) equals [1, x] if t ∈Zp and 0 otherwise. We show that acting by (HGV )[T −1
1 ] and

G gives us all functions. Observe that (HGV )[T −1
1 ]-span gives all functions supported and

constant on Zp . By scaling, i.e., T -action, we get any function supported and constant on
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any pnZp . Furthermore, U -action behaves as translation, so we get all functions supported
and constant on a set of the form a +pnZp , for any a ∈Qp and n ∈Z. It is easy to see that
these functions span C ∞

cpt(Qp ,c-IndT
T∩K VU p

). So, we see that f generates all functions in
IndG

B
c-IndT

T∩K VU p
supported on BU . Acting by G, we get any function supported on BUg−1

for each g ∈ G . Since B \ G is compact by Iwasawa decomposition, it follows that these
functions span all of IndG

B
c-IndT

T∩K VU p
. □

7.7. Corollary. — If dimV > 1, the weight f (V ) generates IndG
B
χ as a G-representation.

Proof. The of V in c-IndG
K V generates it as a G-representation. This is easily seen by identi-

fying c-IndG
K V with k[G]⊗k[K ] V. The desired result is clear from the following commutative

diagram.

V

c-IndG
K V IndG

B
χ

c-IndV
G K ⊗HG V χ

′.

∼

□

7.8. Corollary (irreducible principal series representations). — Let χ1,χ2 : Q×
p→ k× be

two smooth characters, and χ1|Z×
p
̸=χ2|Z×

p
. Then IndG

B
(χ1⊗χ2) is an irreducibleG-representation.

Proof. We are in the setup of Proposition 3.8. So there is a unique weight V and it satisfies
dimV > 1. By Corollary 7.7, V generates IndG

B
(χ1⊗χ2). Any nonzero subrepresentation must

contain the unique weight V. Hence IndG
B

(χ1 ⊗χ2) is irreducible. □

8. Digression: Bruhat-Tits tree

A good reference for this section is [Ser80, Chapter 2]. Let F /Qp be a finite extension
of local fields with uniformizer π. Fix a two-dimensional F -vector spaceW.

8.1. Definition. A lattice in W is a OF -submodule of W which spans W as an F -vector
space.

We say two lattices L and L′ are equivalent or homothetic if L = cL′ for some c ∈ F×.

Denote byX the set of all equivalence classes of lattices. We endowX with a graph structure
as follows– the vertices are the equivalence classes [L] and two distinct vertices [L] and [L′]
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are adjacent by a unique edge if there exists representatives L and L′ such that πL ⊂ L′ ⊂ L.

Why are not defining it as a directed graph? because πL ⊂ L′ ⊂ L implies L′ ⊂ L ⊂ π−1L′.
Then X is called the Bruhat-Tits tree corresponding to GL2 . The name is justified by the
following proposition–

8.2. Proposition. — X is a tree.

Proof. Let [L] and [L′] be two vertices of X . Since L ∩L′ is also a lattice by standard lin-
ear algebra, we may replace L′ by a different representative so that L′ ⊂ L. Then L/L′ is
a finite OF -module. Hence, by Jordan-Hölder filtration, there is a sequence of lattices
L′ = L0 ⊂ ·· · ⊂ Ln = L such that Ln/Ln−1

∼=OF /π. This shows thatX is connected. For the sec-
ond part, consider a path L0 ⊂ ·· · ⊂ Ln−1 ⊂ Ln ⊂ ·· · ⊂ Lr in X . In particular, Ln/Ln−1

∼=OF /π

and [Li ] ̸= [L j ] for each i ̸= j . We show that Lr /L0
∼= OF /πr by induction on r. There is

nothing to do for r = 1. Assume as induction hypothesis that Lk /Lℓ ∼= OF /πk−ℓ for each
1 É k−ℓÉ r −1.We have the following commutative diagram of OF -modules with exact rows

0 L1/L0 Lr /L0 Lr /L1 0

0 L1/L0 Lr−1/L0 Lr−1/L1 0

0 OF /π OF /πr−1 OF /πr−2 0.

If the top row splits then Lr−1/L0 ,→ Lr /L0 ↠ Lr /L1 must be an isomorphism. But this is
certainly not possible because the composition L1/L0 ,→ Lr−1/L0 ,→ Lr /L0 ↠ Lr /L1 must be
0. Hence, the top row is non-split and Lr /L0

∼= OF /πr . Here, we are implicitly using PID
structure theorem. □

8.3. Proposition. — X is a regular graph of degree |OF /π|+1, i.e., every vertex has degree
|OF /π|+1.

Proof. Fix a vertex [L′]. Then [L] is adjacent to [L′] if and only if πL ⊂ L′ ⊂ L. That is,
there is a one-one correspondence between L and one-dimensional OF /π-subspaces of
π−1L′/L′ ∼= L′/ωL′ ∼= (OF /π)⊕2. The proposition follows by the observation that (OF /π)⊕2 has
exactly |OF /π|+1 lines. □

In fact, the structure of X is completely determined by the properties: (a) it is a tree;
(b) every vertex has |OF /π|+1 neighbors.

8.4. Action of GL2(F ). The general linear group AutF W acts on lattices. If L1 ∼ L2 are
equivalent lattices then it is easy to show that AL1 ∼ AL2 for each A ∈ AutF W. Also, if
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Figure 8.1. A Bruhat-Tits tree when OF /π∼= F2 [Cas, p. 7].

[L1] ∼ [L2] are adjacent then [AL1] and [AL2] are also adjacent. Therefore, after fixing a
basis e1,e2 ∈V , it follows that GL2(F ) acts on X .

8.5. Proposition. — The action of G on X is transitive on (ordered) edges.

Proof. Let us assume F =Qp . The same proof works in the general case. It is clear that G

acts transitively on nodes. Therefore, it suffices to show the following claim–

Claim 1. Let L be a lattice. Denote GL := StabG L. Then GL acts transitively on the edges
emanating from the node [L].

Again, because the G-action is transitive on nodes, we may assume L =Z⊕2
p without any loss

of generality. Then GL = K = GL2(Zp )Q×
p . This is same as showing that GL acts transitively

on the set of sub-lattices L′ ⊂Z⊕2
p satisfying Z⊕2

p /L′ ∼= Fp . Such L′ are of the form A(Z⊕2
p ) for

some A ∈ Mat2(Zp ) such that det A = p. If B is another matrix with integral entries such that
detB = p then it’s clear that AB−1 ∈ GL2(Zp )Q×

p =GL . Hence the claim. □

8.6. Stabilizers of edges as Iwahori subgroups. Choose a basis e1,e2. Take the adjacent
lattices L1 = OF e1 +OF e2 and L2 = OF e1 +πOF e2. Note that L2 = αL1 where α = diag(1,π).
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The stabilizer of the edge [L1][L2] is equal to

StabG [L1][L2] = StabG [L1]∩StabG [L2] = K F×∩αKα−1F×,

which can be easily verified to be equal to I F× where I = K ∩αKα−1 is an Iwahori subgroup.

In terms of matrices: the preimage of the upper triangular subgroup
[
⋆ ⋆

0 ⋆

]
of GL2(OF /π).

8.7. Corollary. — There is a bijection between ordered edges of X and G/I F×.

Proof. Orbit-Stabilizer theorem. □

9. The Steinberg representation

The Steinberg representation arises from the principal series representation correspond-
ing the trivial character 1T : T → k×, i.e., IndG

B
1T .

9.1. Definition. The Steinberg representation, denoted St, is the unique representation
which fits into the exact sequence

0→1G→ IndG
B
1T → St→ 0,

where the first map comes from Frobenius reciprocity. Explicitly, one can write

IndG
B
1T = { f : G→ k : f (xg ) = f (g ) for each x ∈ B}∞

∼= { f : B\G→ k : f is locally constant},

where we are implicitly using compactness of B \G ∼= (B ∩K )\K (Iwasawa decomposition).
Then 1G can be identified with the subset of constant functions B\G→ k.

9.2. Remark. One can alternatively define St via the exact sequence

0−−−→ St−−−→
c-IndG

K 1K

(T1 −1,T2 −1)
sum all nodes in X−−−−−−−−−−−→1G −−−→ 0

Recall the pro-p Iwahori subgroup I (1).

9.3. Lemma. — B \G has exactly two I (1)-orbits. Furthermore,

• A fundamental domain for the I (1)-action is
{

B ,B w
}
, where w =

[
0 1

1 0

]
.

• The coset B is stabilized by I (1)∩B and B w is stabilized by I (1)∩B.

• The action of I (1)∩B (respectively I (1)∩B) is transitive on the I (1)-orbit of B w

(respectively B).
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Proof. We know that B \G ∼= B ∩K \ K . Consider the following identities:[
a 0

c d

][
0 1

1 0

][
x y

z w

]
=

[
az aw

cz +d x cw +d y

]
[

a 0

c d

][
1 0

0 1

][
x y

z w

]
=

[
ax ay

cx +d z c y +d w

]
,

where
[

x y

z w

]
∈ I (1). We will either take z = 0 or y = 0 depending on the situation to prove

the third assertion of the statement on the fly. It is not hard to observe that the RHS of
the above two equalities cover all matrices in K . Indeed, to express an arbitrary matrix[

e f

g h

]
∈ K in the above form, we may proceed as follows–

• νp (e) > νp ( f ). Consider the first identity and set y = 0. Take a = pνp ( f )u1 and
z = pνp (e)−νp ( f )u2 while adjusting u1,u2, w ∈ Z×

p so that w ≡ 1 (mod p). Choose
c = h/w. Then we want to ensure cz +d x = g ⇐⇒ g −hw−1pνp (e)−νp ( f )u2 = d x.

This is certainly possible.
• νp (e) É νp ( f ). Consider the second identity and set z = 0. Take a = pνp (e)u1 and

y = pνp ( f )−νp (e)u2 where u1,u2 ∈Z×
p are chosen such that x ≡ 1 (mod p). Set c = g /x.

Then one can easily adjust d and w to ensure d w = h − g x−1pνp ( f )−νp (e)u2. □

9.4. Lemma. — dimStI (1) = 1.

Proof. We have the long exact sequence in cohomology,

0→ k→ IndG
B

(1T )I (1)→ StI (1)→H 1(I (1),k)→H 1(I (1), IndG
B
1T )→ · · · .

We know that H 1(I (1),k) ∼= HomcontGrp (I (1),k) holds because k is a trivial I (1)-module. We claim
that H 1(I (1),k)→ H 1(I (1), IndG

B
(1T )) is injective. Suppose not. Let c ∈ HomcontGrp (I (1),k) be

such that there exists some f ∈ IndG
B
1T such that f (xg )− f (x) = c(g ) for each x ∈ B \ G

and g ∈ I (1). Given any coset B x in the I (1)-orbit of B , by Lemma 9.3, we can find
i ∈ I (1)∩B such that i fixes B w and Bi = B x. Therefore, c(i ) = f (Bi )− f (B) = 0. Hence,
0 = c(i ) = f (Bi )− f (B) = f (B x)− f (B). This shows that f is constant on the I (1)-orbit of B .

Similarly, f is constant on the I (1)-orbit of B w. Thus, c = 0 and we have the exact sequence

0→ k→ IndG
B
1I (1)

T → StI (1)→ 0.

We are now done by Lemma 9.3 and the fact that dim is additive over exact sequences. □

9.5. Remark. It is worth mentioning that H 1(I (1),k) ∼= HomcontGrp (I (1),k) is far from 0 due to
maps of the form I (1)↠Up

∼−→ Fp ,→ k.

9.6. Theorem. — St is irreducible.
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Proof. Since dimStI (1) = 1, it follows that St contains a unique weight. By Proposition 3.8, a
weight of IndG

B
1T has dimension either 1 or p. Let V be the weight of IndG

B
1T with dimV = p.

By left-exactness of HomK (V ,−),

0→HomK (V ,1G |K )→HomK (V , IndG
B

(1T )|K )→HomK (V ,St |K ).

Of course HomK (V ,1G |K ) = 0. By Proposition 3.8, dimHomK (V , IndG
B

(1T )|K ) = 1. Therefore
V is also a weight of St, consequently, this is the only weight. By Corollary 7.7, V generates
the quotient St as a G-module. Any nonzero subrepresentation must contain the unique
weight V. Thus, St is irreducible. □

9.7. Remark. The “Steinberg weight” F (p −1,0) is a weight of IndG
B
1T and is disjoint from

1G , hence a weight of St and therefore the unique weight of St.

10. Change of weight

Fix weights V and V ′. Define the “relative Hecke object”, also called the module of
interwiners, as

HG (V ,V ′) = HomG (c-IndG
K V ,c-IndG

K V ′).

It is a (HGV ′,HGV )-bimodule with pre- and post-composition.

10.1. Proposition. —

(1)

HG (V ,V ′) ∼=
{
ϕ : G→Homk (V ,V ′) : ϕ(k1g k2) = k1ϕ(g )k2

for all k1,k2 ∈ K , g ∈G ,K \ Suppϕ/K is finite

}
(2) HG (V ,V ′) ̸= 0 if and only if VU p

∼=V ′
U p

as Tp -representations.
(3) If V ̸∼=V ′ and VU p

∼=V ′
U p

, there is a Hecke operator ϕ : G→Homk (V ,V ′) supported
on K diag(pr , p s)K if and only if r < s, and it is unique up to scaling.

Proof. The proof is essentially same as that of Proposition 5.2. □

In (3) of Proposition 10.1, the only possibility is V = F (b,b) and V ′ = F (b + p − 1,b),
upto symmetry. There exist “relative” Hecke operators ϕ− : c-IndG

K V ′ → c-IndG
K V and

ϕ+ : c-IndG
K V → c-IndG

K V ′ such that Suppϕ± = K diag(1, p)K . For the next proposition, we
make the identifications

HGV ∼= k[T1,T2,T −1
2 ] ∼=HGV ′

and call both algebrasH .We think of ϕ− ◦ϕ+ and ϕ+ ◦ϕ− as algebra endormorphisms of
H = k[T1,T2,T −1

2 ].
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10.2. Proposition. — The maps ϕ− and ϕ+ commute and ϕ+ ◦ϕ− =ϕ− ◦ϕ+ = T 2
1 −T2 upto

scaling.

Sketch. One can develop a “relative” mod-p Satake transform giving an inclusion of algebras
HG (V ,V ′) ,→HT (VU p

,V ′
U p

) using which one shows that ϕ± commute. The second assertion
is proved by a direct calculation. □

10.3. Corollary. — If χ′ : H → k is an algebra homomorphism such that χ′(T 2
1 −T2) ̸= 0 then

c-IndG
K V ⊗H

χ′ ∼= c-IndG
K V ′⊗H

χ′.

Proof. We have mapsϕ±⊗H
χ′. By Proposition 10.2, note that (ϕ+◦ϕ−)⊗H

χ′ =χ′(T 2
1 −T2) ̸= 0.

Hence, their compositions act invertibly by the nonzero scalar χ′(T 2
1 −T2). □

10.4. Proposition. — Let χ = χ1 ⊗χ2 : T → k× be a smooth character and χ1 ̸= χ2. Then
IndG

B
χ is irreducible.

Proof. The case χ1|Z×
p
̸=χ2|Z×

p
is already done. So let us assume χ1|Z×

p
=χ2|Z×

p
and χ1(p) ̸=χ2(p)

We know that π := IndG
B
χ contains two weights, say V and V ′, of the form F (b,b) and

F (p −1+b,b), respectively, with 0 É b < p −1. Corollary 7.7 tells us that V ′ generates π as
a G-module. As usual, let’s suppose σ⊆π is a nonzero G-subrepresentation. It suffices to
show that V ′ ⊂σ. Indeed, if this were not true then there is a K -linear inclusion V ,→σ|K .
This is simply because σ|K must contain a weight. By Frobenius reciprocity, this gives a
G-linear map c-IndG

K V →σ, which factors as c-IndG
K V ⊗H

χ′→σ for some Hecke-character
χ′, as HomK (V ,π|K ) is 1-dimensional. By Proposition 5.8, χ′ is given by χ′(T1) =χ2(p)−1 and
χ′(T2) = χ1(p)−1χ2(p)−1. Note that χ′(T 2

1 −T2) = χ2(p)−1(χ(p)−1 −χ1(p)−1) ̸= 0. Therefore,
Corollary 10.3 shows that we have a nonzero G-linear map c-IndG

K V ′⊗H
χ′→σ, which gives

rise to a K -linear inclusion V ′ ,→σ|K . Thus, σ generates π. □

11. Classification

In this section, we classify all smooth irreducible (admissible) representations of G .We
remark that this admissiblity assumption is not necessary. Let Γ⊂G be a closed subgroup.

11.1. Definition. A smooth Γ-representation π is called admissible if dimπW is finite for
all open subgroupsW of Γ.

11.2. Definition. Let π be an irreducible admissible G-representation. We say π is
supersingular if for any weight V the action of T1 on HomK (V ,π|K ) is nilpotent, i.e., all
eigenvalues of T1 are zero.
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Let us state the main theorem of this chapter.

11.3. Theorem (Barthel-Livné). — Every irreducible admissible G-representation falls into
one of the following disjoint families:

(1) principal series: IndG
B
χ1 ⊗χ2, χ1 ̸=χ2,

(2) smooth characters: χ◦det,

(3) twists of Steinberg: St⊗(χ◦det),

(4) the supersingular representations.

11.4. Proposition. — Let π be a smooth Γ-representation. Then π is admissible if and only if
dimπW is finite for some open pro-p subgroup W of Γ.

Proof. Let W be an open pro-p subgroup such that dimπW <∞ and W ′ be an arbitrary
open subgroup. By replacingW ′ byW ′∩W we may assumeW ′ ⊂W. SinceW is pro-p,W ′

must have finite index. Note that πW ′ = HomW ′(1W ′ ,π|W ′) ∼= HomW (c-IndW
W ′ 1W ′ ,π|W ).We

are now done by Lemma 11.5. □

11.5. Lemma. — Let π be a smooth Γ-representation such that dimπW <∞ for some open pro-
p subgroup W of Γ. Then dimHomW (M ,π|W ) is finite-dimensional for any finite-dimensional
smooth W -representation M .

Proof. We induct on dim M . SinceW is pro-p, there is an exact sequence

0→1W →M→M/1W → 0.

Applying HomW (−,π|W ) gives us the desired result by induction hypothesis. □

11.6. Proposition. — Let π be smooth representation of G .

(1) The representation π is admissible if and only if dimHomK (V ,π|K ) is finite for any
weight V.

(2) If π is admissible, then π possesses a central character.

Proof.

(1) One direction is done by Lemma 11.5. For the converse, let us suppose that
dimHomK (V ,π|K ) < ∞ for all weights V ,→ π|K . It is enough to show that πK (1)

is finite-dimensional. Note that πK (1) ∼= HomK (c-IndK
K (1)1K (1),π) by Frobenius reci-

procity. We know that c-IndK
K (1)1K (1) is finite-dimensional. The proof is complete

by Lemma 11.5.
(2) There is a natural map Q×

p
∼= Z (G)→AutG π. By Schur’s lemma, AutG π= k×. So we

obtain a character Q×
p→ k×. □
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11.7. Corollary. — All principal series representations and all representations of the form
St⊗(χ◦det) with χ : Q×

p→ k× a smooth character, are admissible.

Proof. We have already characterised weights of principal series representations. So Proposi-
tion 11.6 (i) implies that principal series are admissible. By the proof of Theorem 9.6, we
get the second result. □

11.8. Remark and definition. Let V be a finite dimensional representation of Γ. A filtration
0 = V0 ⊂ V1 ⊂ ·· · ⊂ Vℓ = V of V is called a Jordan-Holder series if all the V j are subrepre-
sentations and each V j /V j−1 is simple. The semisimplification V ss of V is defined to be⊕ℓ

j=1 V j /V j−1. This is independent of the choice of Jordan-Holder filtation.

11.9. Proof of Theorem 11.3. Let π be an irreducible admissible representation and let V be
a weight of V. The (finite-dimensional) multiplicity space HomK (V ,π|K ) contains a common
Hecke eigenvector f : V ,→π|K . Let this eigenvector be given by the algebra homomorphism
χ′ : HGV → k. If χ′(T1) = 0 for all V then π is supersingular. So let us assume χ′(T1) ̸= 0. Then
there is a nonzero G-linear surjection c-IndG

K V ⊗HG V χ
′ ↠π.We consider several possiblities:

• If dimV > 1 then c-IndG
K V ⊗HG V χ

′ ∼= IndG
B
χ1⊗χ2 for some choice of χi . See Theorem

7.1. Therefore, π is either an irreducible principal series or a twist of Steinberg in
this case.

• If dimV = 1 and χ′(T 2
1 −T2) ̸= 0 then we have c-IndG

K V ⊗HG V χ
′ ∼= c-IndG

K V ′⊗HG V χ
′

for some p-dimensional weight V ′ from Corollary 10.3. One can now proceed as in
the previous case.

• If dimV = 1 and χ′(T 2
1 −T2) = 0, then we may assume V = 1K simply by twisting

by a character of the form η◦det. We may further arrange χ′(T1) = χ′(T2) = 1 by
ensuring η(p) =χ′(T1). One can prove that there is an exact sequence

0−−−→ St−−−→
c-IndG

K 1K

(T1 −1,T2 −1)
sum all nodes−−−−−−−−−−→

in Bruhat-Tits tree
1G −−−→ 0.

The middle term is the same as c-IndG
K 1K ⊗HG V χ

′. It follows that π⊗ (η◦det) is the
trivial character. Twisting back, π is a character of the desired form.

We now show that the four families discussed above are disjoint. We do an analysis on their
weights and Hecke eigenvalues. Firstly, if π is any subquotient of a principal series and V is
any weight of π then VU p

∼=χ1|Z×
p
⊗χ2|Z×

p
as Tp-representations. This gives that the Hecke

eigenvalues on HomK (V ,π|K ) are given by χ′(T1) =χ2(p)−1 and χ′(T2) =χ1(p)−1χ2(p)−1.

• The condition χ′(T1) = 0 distinguishes the supersingular family.
• The irreducible principal series representations are distinguished by the condition

1 < dimV < p or χ′(T 2
1 −T2) ̸= 0.

• Finally, the characters of G are determined by dimV = 1 and χ′(T 2
1 −T2) = 0,

• while twists of the Steinberg are determined by dimV = p and χ′(T 2
1 −T2) = 0. □
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11.10. Definition. An irreducible admissible G-representation is called supercuspidal if it
is not a subquotient of a principal series representation.

11.11. Corollary. — If π is an irreducible admissible representation of G then π is supercuspidal
if and only if π is supersingular.

Proof. Immediate from Theorem 11.3. □

We end this chapter by stating a theorem which characterises supersingular representa-
tions.

11.12. Theorem (Breuil). — The irreducible supersingular representations of G are exactly

c-IndG
KQ×

p
Symr F

2
p

(T1)
⊗ (η◦det),

where η : Q×
p→ F

×
p is a character.

Proof. See [Herz+, Section 10] or [Em08]. □
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Chapter 3

Mod p local Galois representations

In this chapter, we classify all irreducible mod p representations of the local Galois group
GQp = Gal(Qp /Qp ) over k.

1. Structure theory of local field extensions

For this section, fix a local field (K , | · |), i.e., a complete non-Archimedean field with a
discrete valuation | · |. Let R be its valuation ring and k the residue field. We assume k to be
perfect and of positive characteristic p. We also fix an algebraic closure K of K . For basic
definitions of ramification theory, see [Ser80, Chapter 1].

1.1. Definition. A class of field extensions C = {L/K } is said to be distinguished if it
satisfies the following two conditions:

• (transitive in towers) If K /F and L/K are in C then L/F is in C .

• (base change) Suppose E ,F,K are subfields of a common field, and F ⊂ K ,F ⊂ ()E ,

and K /F ∈C . Then EK /E ∈C .

• (Redundant) Suppose K ,L1,L2 are subfields of a common field, with K ⊂ L1 ∩L2

and that L1/K ,L2/K ∈C . Then L1L2/K ∈C .

Well-known examples of distinguished classes include finite extensions, separable exten-
sions, and purely inseparable extensions. Both unramified and tamely ramified extensions
are distinguished classes of field extensions in the sense of [Lang]–

1.2. Theorem. —

• The class of unramified extensions is a distinguished class.
• The class of tamely ramified extensions is a distinguished class.

Then a formal consequence is that there exists a unique maximal unramified extension,
denoted K unr, and a maximal tamely ramified extension, denoted K tame. The residue field of
K unr is k. This is because given any finite extension ℓ/k, there exists an unramified extension
L/K with residue field extension ℓ/k. This comes from the theory of Witt vectors. The
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extension K sep/K unr is Galois and totally ramified. Also, there is a natural isomorphism
Gal(K unr,K )→Gal(k/k).We have the usual short exact sequence of Galois groups

1→Gal(K tame/K unr)→Gal(K tame/K )→Gal(K unr/K )→ 1.

An extension is called wildly ramified if it is not tamely ramified. Informally, K sep/K tame is
the wildly ramified “part” of K sep/K .

1.3. Theorem (maximal tamely ramified extension). — For each positive integer e

not divisible by p, there exists a unique degree e tamely ramified extension Le /K unr, ob-
tained by adjoining the eth root of any uniformer of K unr. Moreoever, K tame = ⋃

e Le and
Gal(K tame/K unr) ∼=∏

ℓ̸=pZℓ.

Proof. We may relabel K unr by K . The residue field of K is algebraically closed, so K

contains all roots of unity of order prime to p by the theory of Teichmüller lifts. Also,
all extensions of K are totally ramified because no residue field extension is possible. By
Theorem 1.4, we are almost done, except that we now need to show K [π1/e ] = K [π′1/e ] holds
for two uniformizers π,π′ ∈ K . This is immediate because π/π′ ∈O×

K is an eth power. Indeed,
this comes from a quick application of Hensel’s lemma and the fact that k is algebraically
closed. Now, let Le = K [π1/e ] be the unique degree e tamely ramified extension of K .

There is an isomorphism Gal(Le /K ) ∼= Z/eZ functorial in Le and e. Taking limits, we get
Gal(K tame/K ) = limZ/eZ=∏

ℓ̸=pZℓ. □

1.4. Theorem (characterisation of totally tamely ramified extensions). — Let L/K be
totally tamely ramified with [L : K ] = e. Then there exists a uniformizer π of K and a uniformizer
Π of L such that Πe = π. That is, L = K [π1/e ]. Conversely, if p ∤ e then K [π1/e ]/K is a totally
tamely ramified extension of degree e.

Proof. See [Lang, pp. 52-53]. □

1.5. Theorem. — The wild ramification group Gal(K sep/K tame) is pro-p.

Proof. A finite quotient of Gal(K sep/K tame) corresponds to a finite Galois extension of K tame.

Such an extension is purely wildly ramified and hence must be of p-power degree. □

By techniques similar to above, one can prove

1.6. Theorem (maximal unramified extension). — Suppose k ∼= Fp f . There exists a unique
unramified extension Le /K of degree e which is obtained by adjoining to K all roots of X p f e −X .

Moreover, K unr =⋃
e Le and Gal(K unr/K ) ∼= Ẑ, the profinite completion of Z, which is topologi-

cally cyclically generated1 by the Frobenius x 7→ xp f of k/k.

1i.e., Ẑ has a dense cyclic subgroup generated by...
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Assuming the residue field of K to be finite, we summarise the main facts in a diagram:

K sep

K tame

K unr

K

pro-p

∏
ℓ̸=p Zℓ

Ẑ

2. Serre’s fundamental characters

We return to working with Qp . Let us setup some notations–

• σ is the Frobenius of Fp /Fp .

• The absolute inertia group IQp = Gal(Qp /Qunr
p ).Of course,GQp /IQp = Gal(Qunr

p /Qp ),

which is topologically generated by σ.

• It = Gal(Qtame
p /Qunr

p ) and Ip = Gal(Qp /Qtame
p ).

2.1. Definition. Let X be set with an action of GQp .We call the action unramified if IQp

acts trivially.

As a special case we can define what it means for a Galois representation to be unramified.
If η : GQp → k× is an unramified character then it is fully determined by the choice of η(σ). For
λ ∈ k×, we denote by µλ the unique unramified character given by σ 7→λ−1. For each n Ê 1,

fix a πn ∈Qp such that π
pn−1
n =−p. Then Qtame

p =⋃
nÊ1Q

unr
p (πn). To see this, use Theorem

1.3 and Fermat’s little theorem. Furthermore, if g ∈GQp then g (πn)/πn is a pn −1-th root
of unity, so there exists a character, independent of the choice of πn, ωn : GQpn → F×pn such
that g (πn) =ωn(g )πn . Here, Qpn denotes the unique unramified extension extension of Qp

of degree n. It follows that (ζp −1)p−1/p ≡−1 (mod ζp −1) from the following calculation

1

p
(ζp−1)p−1 = (ζp −1)p−1

(ζp −1)(ζ2
p −1) · · · (ζp−1

p −1)
=

p−2∏
n=1

1

1+ζp +·· ·+ζn
p
≡ 1

(p −1)!

Wilson’s≡ −1 (mod ζp−1).

Thus, ω1 is the familiar mod p cyclotomic character which we denote simply by ω.

Of course ωn is trivial on the wild ramification “part” Ip . Therefore, ωn is in fact a
character of It . If d | n it’s clear that ω(pn−1)/(pd−1)

n =ωd . For a given n and h ∈Z, we say h

is primitive if it is not divisible by (pn −1)/(pd −1) for any d < n. Thus, we conclude that
every mod p character of It is of the form ωh

n for some well-defined n and primitive h. Such
a character said to be of level n.
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2.2. Classification. Let g ∈GQp . Observe that τ 7→ωh
n(gτg−1) is a character of GQpn which

is of the form ω
p j h
n . If h is primitive then the characters ωh

n ,ωph
n , . . . ,ωpn−1h

n are pairwise
distinct. Therefore, by Mackey’s irreducibility criterion ??, Ind

GQp

GQpn
ωh

n is irreducible. Note
that these inductions are finite-dimensional, and since GQpn has finite index in GQp , compact
and smooth inductions are equal.

2.3. Lemma. — We can twist Ind
GQp

GQ
p2
ω2 by an unramified character so that its determinant

is ω. We denote the resulting representation by Indω2.

Proof. It is easy to see that an unramified character χ : GQp → F
×
p is actually a character

on GQp /Iabs = Gal(Qunrp /Qp ) ∼= Ẑ. So χ, being continuous, is determined by its value at the
Frobenius σ ∈ Gal(Qunrp /Qp ) since Z⊂ Ẑ is a dense cyclic subgroup. We have

det(χ⊗ Ind
GQp

GQ
p2
ω2) =χ2 det(Ind

GQp

GQ
p2
ω2).

It suffices to show that the determinant of Ind
GQp

GQ
p2
ω2 on Iabs = Gal(Qp /Qunrp ) is ω. Indeed,

then it’s clear from the above formula that we can choose χ to be an unramified character
so det(χ⊗ Ind

GQp

GQ
p2
ω2) =ω. So we are done by the following lemma. □

2.4. Lemma. — Determinant of Ind
GQp

GQ
p2
ω2 on Gal(Qp /Qunr

p ) is ω.

Proof. Because of how ω2 is defined, ω2 restricted to Gal(Qp /Qtamep ) is trivial. So ω2|Iabs

is a character on Gal(Qtamep /Qunrp ) ∼= ∏
ℓ̸=pZℓ, where σ̃τσ̃−1 = τp for τ ∈ Gal(Qtamep /Qunrp )

and σ̃ ∈ Gal(Qtamep /Qp ) is a lift of The Frobenius σ. Choose a lift σ ∈ GQp of σ. Then
GQp =GQp2⊔GQp2σ. By explicit description of induction, it can be seen that, for g ∈ Gal(Qp /Qunr

p ),

det(Ind
GQp

GQ
p2
ω2)(g ) = det(ω2(g ))det(ω2(σgσ−1)) =ω2(g )ω2(g p ) =ωp+1

2 (g ) =ω(g ).

The lemma is proved. □

It is easy to see that one can prove Lemma 2.3 in a more general setting where Qp2 is
replaced by Qpn .

2.5. Theorem (irreducible mod p representations of GQp ). — If W is an n-dimensional
irreducible representation of GQp over k then there exists λ ∈ F×p such that

W ∼= Indωh
n ⊗µλ

for primitive 1 É h É pn −2.

Proof. Since Ip is pro-p and W is irreducible, W = W Ip . Hence, W |IQp
is a representation

of It . Since It is abelian of pro-order relatively prime to p, it follows that W |It is a direct
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sum of characters. Let χ be such a character. Then it of some level m so that it extends
to GQpm . Consequently, W |GQpm

contains χ and so by Frobenius reciprocity W contains

Ind
GQp

GQpm
χ. SinceW is irreducible, it follows that n = m and χ=ωh

n times some unramified
character. □

3. The mod p local Langlands correspondence

We follow [Br10].

3.1. Theorem (Breuil). — There exists an explicit bijection
irreducible (admissible)

supersingular representations of

GL2(Qp ) over Fp upto isomorphism.

←→


irreducible continuous

Gal(Qp /Qp )→GL2(Fp )

upto isomorphism.


Sketch. The bijection is the following:

c-IndG
KQ×

p
Symr F

2
p

(T1)
⊗ (η◦det)←→ Indωr+1

2 ⊗η,

where on the RHS, η acts on Fp via local class field theory. □

To the representation π which is obtained as the extension

0→ Ind
GL2(Qp )
B(Qp )

χ1 ⊗χ2ε
−1→π→ Ind

GL2(Qp )
B(Qp )

χ2 ⊗χ1ε
−1→ 0

we associate the Galois representation ρ which is obtained as an extension 0→χ1→ ρ→χ2→ 0.

Here ε is the reduction mod p cyclotomic character, and χ1 and χ2 are characters Q×
p→ F×

which are not equal to each other nor to the product of the other by the p-adic cyclotomic
character or its inverse.
For more general 2-dimensional reducible representations of Gal(Qp /Qp ), the corre-

sponding representations of GL2(Qp ) are a bit more subtle to define and we refer the reader
to [Em10] or [Col, §VII]. The above correspondence can be realized using the theory of
(ϕ,Γ)-modules, which makes it much more natural.
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Chapter 4

Fontaine’s (ϕ,Γ)-modules

1. p-adic complex numbers

We first prove two basic lemmas.

1.1. Lemma. — If F is a complete valued field, then the completion of the algebraic closure F

is algebraically closed.

Proof. Denote the completion of the algebraic closure by E . Let P ∈ E [X ] be a polynomial
of minimal degree Ê 1 which doesn’t have a zero. By a suitable scalar change of variables,
we may assume that P ∈ OE [X ] and P is monic. Choose a sequence Pn ∈ F [X ] such that
limn→∞ Pn = P. □

1.2. Ax’s theorem. — If F is a valued field of characteristic p, then F sep is dense in F .

Proof. If y ∈ F then there exists n Ê 1 with α := y pn ∈ F sep by field theory. Pick any σ with
a positive valuation. Let yi be a zero of the separable polynomial X pn −σi X −α. It is now
clear that yi → y. □

We recall that a ring R of characteristic p > 0 is called perfect if the ring endomorphism
x 7→ xp is bijective. Define Cp as the p-adic completion of Qp . The above results tell us that
Cp is algebraically closed.

Qp Cp

Q Qp

Figure 1.1. Horizontal and verticle arrows denote completions and algebraic closure, respectively.
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2. Period rings in characteristic p

It turns out the OCp is not a p-ring, i.e., OCp /p is not perfect. Define

O ♭
Cp

:= lim
x 7→xp

OCp /p = {(x(0), x(1), . . .) : x(i ) ∈OCp /p, (x(i+1))p = x(i )},

that is, the limit of the inverse system

· · ·−→OCp /p
x 7→xp

−−−−−−→OCp /p
x 7→xp

−−−−−−→OCp /p.

Also define
Ẽ+ := lim

x 7→xp
OCp = {(x0, x1, . . .) : xi ∈OCp , xp

i+1 = xi }

where the ring operations are defined by setting

(x y)i = xi yi , (x + y)i = lim
k→∞

(xi+k + yi+k )pk
.

It is easily verified that O ♭
Cp

∼= Ẽ+ through the natural map Ẽ+→O ♭
Cp
given by

(x0, x1, . . .) 7→ (x0 (mod p), x1 (mod p), . . .).

From now on, we work with Ẽ+. Define a valuation valE : Ẽ+ \ {0}→RÊ0 as valE x := valp x0.

We introduce the following notation.

• ε := (1,ζp ,ζp2 , . . .) ∈ Ẽ+ where ζpn is a primitive pnth root of unity.
• X := ε−1.

• Ẽ := Ẽ+[1/X ].

• E := Fp ((X ))sep ⊂ Ẽ (we will see later that Ẽ is an algebraically closed field).
• The Frobenius map ϕ : x 7→ xp on Ẽ+.

• Ẽϕ
f =1 := {0}∪ (ϕ f )−1(1).

• Define θn : Ẽ+→ OCp /p as the composite Ẽ+ ∼−→ O ♭
Cp

πn−→ OCp /p where πn denotes
“projection onto the nth coordinate”.

We record some basic properties in the following proposition.

2.1. Proposition. —

(1) valE X = p/(p −1).

(2) Ẽ+ is perfect ring of characteristic p.
(3) Ẽ is a field containing := Fp ((X )).

(4) Ẽϕ
f =1 = Fp f where Fp sits inside Ẽ+ via α 7→ (α1/pn

)nÊ0.

Proof.

(1) By definition, valE X = limn→∞(ζpn − 1)pn
. Valuation is Galois-invariant. There-

fore, valp (ζpn −1) = 1
φ(pn ) valp Ψpn (1) = 1/pn−1(p −1), where Ψpn denotes the pnth

cyclotomic polynomial. The result follows.
(2) Obvious since ϕ acts as shifting coordinates.
(4) Easily verified. □
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2.2. Theorem. — Ẽ is algebraically closed.

Proof. It is enough to show that every monic polynomial P (T ) ∈ Ẽ+[T ] has a root in Ẽ.

Put d = degP. Denote Pn(T ) = θn(P ) ∈ (OCp /p)[T ] and choose monic lifts P̃n(T ) ∈ OCp [T ]

respectively. Since Cp is algebraically closed, the polynomial P̃n has zeroes α1,n , . . . ,αd ,n .

If k Ê 1, define Sn,k ⊂ OCp /p = {αpk

i ,n+k (mod p)}. We claim that if pk Ê d then Sn,k does
not depend on the choice of P̃n(T ). Indeed, if α ∈ OCp is such that P̃n+k (α) ∈ pOCp then∏(

i=1α−αi ,n+k ) ∈ pOCp so that there is some i such that valp (α−αi ,n+k Ê 1/d and a root
α = α′

i ,n+k of another lift P̃ ′
n+k (T ) of Pn+k (T ) so that S′

n,k ⊂ Sn,k and we have equality by
symmetry. Likewise, we have Sn,k+1 ⊂ Sn,k and since Sp

n+1,k = Sn,k+1 this tells us that the
sets {Sn,k }nÊ0 form a compatible system of nonempty sets of cardinal at most d so that their
inverse limit is nonempty. Since Pn(αpk

i ,n+k ) = Pn+k (αi ,n+k )pk in OCp /p, an element of that
inverse limit is a root of P (T ) which completes the proof. □

2.3. Theorem. — E is dense in Ẽ.

Proof. See [Ber10]. □

3. Galois action on Ẽ

The absolute Galois group actionGQp on Qp extends to a continuous action on Cp . This in
turn extends to a continuousGQp -action on Ẽ.We know thatGQp acts onQp (ζp∞) :=Qp (ζp ,ζp2 , . . .)

via the cyclotomic character χcycl : GQp →Z×
p . Therefore, for g ∈GQp , we have

g ·X = (1+X )
χcycl(g ) −1.

Also defineHQp := kerχcycl = Gal(Qp /Qp (ζp∞)). Then the action ofHQp on E = Fp ((X )) is triv-
ial, and furthermore, if h ∈HQp and K is a separable extension of Fp ((X )) then h(K ) is another
separable extension of Fp ((X )). Therefore, we have a mapHQp →GFp ((X )) := Gal(E/Fp ((X ))).

3.1. Proposition. — The map HQp →GFp ((X )) is an isomorphism.

Proof. If h ∈HQp acts trivially on E then by Theorem 2.3, h acts trivially on Ẽ, and therefore
on OCp , so h = id. On the other hand, if α is an automorphism of E then it extends by
continuity to an automorphism of Ẽ. This automorphism must be trivial on Fp ((X ))perf. We
know that finite extensions of Fp ((X ))perf are of the form ẼK where K /Qp is a finite extension.
However, ẼK only depends on K∞ so that α is the image of some element h ∈HQp . □
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4. (ϕ,Γ)-modules

IfW is an Fp -representation of GQp then the Fp ((X ))-vector space of diagonalHQp -action
invariants

D(W ) := (E⊗Fp W )HQp

inherits the Frobenius ϕ of E and an action of Γ :=GQp /HQp .

4.1. Definition. A (ϕ,Γ)-module over Fp ((X )) is a finite dimensional Fp ((X ))-vector space
endowed with a semilinear Frobenius ϕ such that the (formal) matrix of ϕ with respect
to an arbitrary basis is invertible, and there is a continuous semilinear action of Γ which
commutes with ϕ.

If E/Fp is an extension then we endow it with the trivial ϕ and the trivial action of Γ so
that we may talk about (ϕ,Γ)-modules over E((X )) := E ⊗Fp Fp ((X )).

4.2. Fontaine’s equivalence of categories. — The functor W 7→D(W ) gives an equivalence
of categories between the category of k-representations of GQp and the category of (ϕ,Γ)-modules
over k((X )).

Proof. Without loss of any generality, assume k = Fp . ByHilbert’s theorem 90, H 1(HQp ,GLd (E))

is the trivial group, where we only consider cocycles which are trivial on an open subgroup
ofHQp . So, ifW is an Fp -representation ofHQp then E⊗Fp W ∼= EdimW as a representation
ofHQp . It follows that dimFp ((X )) D(W ) = dimW. In particular, D(W ) is a (ϕ,Γ)-module and
one can recoverW using the formulaW = (E⊗Fp ((X )) D(W ))ϕ=1. On the other hand, if D is a
(ϕ,Γ)-module of dimension d over FP ((X )), then we set

W (D) := (E⊗Fp ((X )) D(W ))ϕ=1.

Choose a basis {di }1ÉiÉd of D and let Mat(ϕ)−1 = (qi j )1Éi , jÉd with respect to that basis.
It is easily checked that

∑d
i=1λi ⊗di ∈ (E⊗Fp ((X )) D)ϕ=1 if and only if λp

k = ∑d
i=1 qkiλi for

all 1 É k É d . Observe that E[X1, . . . , Xd ]/(X p
k −∑d

i=1 qki Xi )1ÉkÉd is an étale E-algebra of
dimension pd (this is easily checked using the Jacobian criterion from algebraic geometry).
Since E is separably closed, it is isomorphic to Epd from general theory of étale algebras
over a field. This identification gives us pd elements inW so thatW is an Fp -vector space
of dimension d . It is then easy to verify that the functors W 7→D(W ) and D 7→W (D) are
inverses of each other. □

5. Colmez’ functor

We study how one can construct representations of B , the upper triangular Borel sub-
group, from the data of a (ϕ,Γ)-module using Colmez’ functor.
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5.1. The operator ψ. Since 1, X , . . . , X p−1 is a basis for k((X )) as a k((X p ))-vector space, and
by nonvanishing of the Vandermonde determinant, so is 1,1+X , . . . , (1+X )p−1. Ifα ∈ k((X )), we
can therefore write α(X ) =∑p−1

j=0 (1+X ) jα j (X p ) in a unique manner. We define ψ(α) =α0(X ).

A (ϕ,Γ)-moduleD has a basis whose elements belong toϕ(D). Indeed, this is equivalent to say-
ingMat(ϕ) is invertible for a choice of basis. If y ∈ D then we can write y =∑p−1

j=0 (1+X ) jϕ(y j )

and we set ψ(y) = y0.

5.2. Lemma. — ψ commutes with Γ and satisfies

ψ(α(X )ϕ(y)) =ψ(α(X ))y and ψ(α(X p )y) =α(X )ψ(y).

Proof. Straightforward computation. □

5.3. Lemma. — Every (ϕ,Γ)-module D admits a k[[X ]]-lattice stable under ψ.

Proof. Let L be a lattice of D. Denote by ϕ∗(L ) the k[[X ]]-module generated by ϕ(L ).

There exists h Ê 0 with X h(p−1)L ⊂ϕ∗(L ). This gives that X −h M ⊂ϕ∗(X −hL ) and hence
X −hL is the desired stable lattice. □

If D is a (ϕ,Γ)-module, let N denote a fixed k[[X ]]-lattice stable under ψ. The inverse
limit limψD denote the set of sequences y = (yn)nÊ0 such that ψ(yn+1) = yn for all n Ê 0.

Denote by
(limψD)bdd = {y ∈ limψD : y is bounded in X -adic topology},

i.e., there exists j , depending on y, such that yn ∈ X − j N for each n Ê 0. The set (limψD)bdd

is ψ-stable and ψ is bijective on it. Of course, (limψD)bdd is Γ-stable because Γ preserves ψ-
stability of lattices. We define the action of α ∈ k[[X ]] on y ∈ (limψD)bdd by (αy)n =ϕn(α)yn .

Denote by D♯ the set of y0 for all y ∈ (limψD)bdd. This is a k[[X ]]-module stable under ψ
and Γ. Further, ψ is surjection on D♯. Observe that D♯ ⊂ X −1N because ψ(X − j N ) ⊂ X −⌈ j /p⌉N .

The natural map limψD♯→ (limψD)bdd is an isomorphism, and D♯ is the largest bounded
k[[X ]]-module of D which is stable under ψ and Γ and on which ψ is surjective.

5.4. Example. IfD = D(ωsµλ) = k[[X ]]·e withϕ(e) =λe and γ(e) =ωs(γ)e, thenD♯ = X −1k[[X ]]·e.

5.5. Representations of B . Each element of B can be written as a product of matrices

diag(x, x) for x ∈ Q×
p , diag(1, p j ), j ∈ Z, diag(1,u) for u ∈ Z×

p , and
[

1 z

0 1

]
with z ∈ Zp . Let

W be a representation of GQp and D(W ) be the associated (ϕ,Γ)-module. For any smooth
Q×

p -character χ, we endow limψD♯(W ) with a B -action as follows:

• diag(x, x) · y)i =χ−1(x)yi

• diag(1, p j ) · y)i = yi− j

• diag(1, a) · y)i = γa−1 (yi ), where γa−1 ∈ Γ is such that χcycl(γa−1 ) = a−1 ∈Z×
p .
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•
([

1 z

0 1

]
· y

)
i

= (1+X )p i z yi .

We then defineΩ(W ) = (limψD♯(W ))⋆ to obtain a smooth representation, where (−)⋆ denotes
the continuous dual.

49



Bibliography

[Abe13] N. Abe, On a classification of irreducible admissible modulo p representations of a p-adic split reductive group,
Compositio Math. 149 2139-2168 (2013)

[BL94] L. Barthel and R. Livné, Irreducible Modular Representations of GL2 of a Local Field, Duke Math J. 75 261-292
(1994)

[Ber10] L. Berger, Galois representations and (ϕ,Γ)-modules, course at IHP (2010), http://perso.ens-lyon.fr
/laurent.berger/autrestextes/CoursIHP2010.pdf

[Ber14] L. Berger and M. Vienney, Irreducible modular representations of the Borel subgroup of GL2(Qp ), Automorphic
Forms and Galois Representations 1 32–51, London Math. Soc. Lecture Note Ser. 414, Cambridge Univ.
Press (2014)

[Br07] C. Breuil, Representations of Galois and of GL2 in characteristic p, graduate course at Columbia University
(fall 2007), https://www.imo.universite-paris-saclay.fr/~christophe.breuil/PUBLICATION
S/New-York.pdf

[Br10] C. Breuil, The emerging p-adic Langlands programme, Proc. Int. Congress of Mathematicians, Hyderabad,
India (2010)

[Cas] B. Casselman, The Bruhat-Tits tree of SL(2), lecture series at Tata Institute for Fundamental Research
(2014), https://ncatlab.org/nlab/files/CasselmanOnBruhatTitsTree2014.pdf

[Col] P. Colmez, Représentations de GL2(Qp ) et (ϕ,Γ)-modules, Astérisque 330 281–509 (2010)
[Em10] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups II, Astérisque 330

403–459 (2010)
[Em08] M. Emerton, On a class of coherent rings, with applications to the smooth representation theory of GL2(Qp ) in

characteristic p, Preprint, http://www.math.uchicago.edu/~emerton/pdffiles/frob.pdf (2008).
[Herz] F. Herzig, p-adic modular representations of p-adic groups, In: Modular Representation Theory of Finite and

p-adic Groups, Lecture Notes Series, Institute for Mathematical Sciences National University of Singapore
30, World Scientific Publishing, Hackensack, NJ, pp. 73–108 (2015)

[Herz+] F. Herzig, The mod p representation theory of p-adic groups, course at Fields Institute in Winter 2012, notes
typed by Christian Johansson, https://www.math.toronto.edu/~herzig/modpreptheory.pdf

[Lang] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110, New York, NY: Springer (1994)
[Ser77] J-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics 42, New York, NY:

Springer (1977)
[Ser80] J-P. Serre, Local Fields, Graduate Texts in Mathematics 67, New York, NY: Springer (1980)
[Ser80] J-P. Serre, Trees, Springer-Verlag Berlin, Heidelberg (1980)
[Yam] Y. Yamamoto, On Mackey Decomposition for locally profinite groups, arXiv:2203.14262 (2022)

http://perso.ens-lyon.fr/laurent.berger/autrestextes/CoursIHP2010.pdf
http://perso.ens-lyon.fr/laurent.berger/autrestextes/CoursIHP2010.pdf
https://www.imo.universite-paris-saclay.fr/~christophe.breuil/PUBLICATIONS/New-York.pdf
https://www.imo.universite-paris-saclay.fr/~christophe.breuil/PUBLICATIONS/New-York.pdf
https://ncatlab.org/nlab/files/CasselmanOnBruhatTitsTree2014.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/frob.pdf
https://www.math.toronto.edu/~herzig/modpreptheory.pdf



	Chapter 1. Introduction
	Chapter 2. Mod p representations of GL2(Qp)
	1 p-adic Groups
	2 Smooth representations
	2.3.  Induced representations
	2.9.  Pro-p groups

	3 Weights
	3.7.  Principal series representations

	4 Associative algebras and conjugacy classes
	5 Hecke Algebras for GL2
	6 Mod-p Satake transform
	7 Comparison between compact and parabolic induction
	8 Digression: Bruhat-Tits tree
	9 The Steinberg representation
	10 Change of weight
	11 Classification

	Chapter 3. Mod p local Galois representations
	1 Structure theory of local field extensions
	2 Serre's fundamental characters
	2.2.  Classification

	3 The mod p local Langlands correspondence

	Chapter 4. Fontaine's (phi,Gamma)-modules
	1 p-adic complex numbers
	2 Period rings in characteristic p
	3 Galois action on E
	4 (,)-modules
	5 Colmez' functor
	5.1.  The operator 
	5.5.  Representations of B


	Bibliography

